

FIRE TESTING OF CONCRETE TUNNEL SEGMENTS

KAMAKSHI PARWANI

www.efectis.com

May 2019

FIRE AND TUNNELS

- □ 1975-1978: attention of Dutch Ministry of Transport (RWS) to tunnel fires, especially after fire in the Velser Tunnel (Netherlands)
- □ 1979-1980: TNO small scale fire tests to establish "RWS fire curve" with a maximum of 1350′C
- □ 1986: TNO and RWS publish fire test procedure for concrete structures in tunnels
- □ 1998: TNO and RWS publish new version of fire test procedure
- 2003: European UPTUN project (led by TNO) performs full scale fire tests in Runehamar tunnel (Norway) and confirms the RWS fire curve
- □ 2006: TNO Centre for Fire Research becomes Efectis
- 2008: Efectis and RWS publish latest version of fire test procedure (2008-Efectis-R0695)

Velser Tunnel

FIRE AND TUNNELS

CONCRETE THERMAL BEHAVIOUR (KNOWN)

EUROCODE 1992-1-2

- Method for determination of the minimum thickness for concrete load bearing and non-load bearing elements
- Simple tables
- ISO/cellulosic fire curve
- Concrete at a temperature more than 500 °C is neglected in the calculation of load-bearing capacity, while concrete at a temperature below 500 °C is assumed to retain its full strength.

Spalling- When using tabulated data no further check is required for normal weight concrete

	Standard fire resistance	Minimum dimensions (mm)			
		slab		axis-distance a	
		thickness one way		two way:	
		n _s (mm)		$I_y/I_x \le 1,5$	$1,5 < I_y/I_x \le 2$
	1	2	3	4	5
	REI 30	60	10*	10*	10*
	REI 60	80	20	10*	15*
	REI 90	100	30	15*	20
	REI 120	120	40	20	25
	REI 180	150	55	30	40
	REI 240	175	65	40	50
	 <i>I_x</i> and <i>I_y</i> are the spans of a two-way slab (two directions at right angles) where <i>I_y</i> is the longer span. For prestressed slabs the increase of axis distance according to 5.2(5) should be noted. The axis distance <i>a</i> in Column 4 and 5 for two way slabs relate to slabs supported at all four edges. Otherwise, they should be treated as one-way spanning slab. * Normally the cover required by EN 1992-1-1 will control. 				

FIRE TEMPERATURE

□ Structural integrity: deterministic approach

- □ Credible worst case scenario:
 - crash with 50 m3 petrol tanker
 - pool size some 150 m2
 - 300 MW

2m

- 90-120 min "leakage"
- □ Small scale test => RWS-fire

8m

Presentation

www.efectis.com

May 2019

www.efectis.com

May 2019

Efectis

7

www.efectis.com

May 2019

HEAT RELEASE RATE

GAS TEMPERATURES NEAR FIRE

GAS TEMPERATURE COMPARISON

RWS VS ISO CURVE

□ Note: above 1200 'C "ordinary" insulation melts / disintegrates

□ Main differences (building) cellulosic - hydrocarbon (tunnel) fires

- (1) Heating rate in first (critical) 30 min
- (2) maximum temperatures during first 2 hours

FIRE CURVES

□ Comparison of the nominal fire curves

CONCRETE THERMAL BEHAVIOUR (UNKNOWN)

□ EUROCODE 1992-1-2 ISO

- RWS, HCM, RABT, MOAC fire curve
- □ Temperature more than 500 °C is it realistic ? Concrete with protection generally starts spalling before 500 °C
- □ Spalling- non-linear and unpredictable process

TEST FURNACE IN BLEISWIJK, NL

May 2019

www.efectis.com

www.efectis.com

May 2019

SPALLING TEST

- Two identical tests
- □ Full scale, real geometry
- □ Real concrete mix
- □ Realistic loading
- □ Cast in realistic direction
- Concrete age > 3 months at time of testing

THERMAL INSULATION TEST

- Tests with minimum and maximum protection thickness
- □ Concrete mix less susceptible to spalling
- Unloaded
- □ Concrete age > 3 months

SPALLING OF CONCRETE IN REAL TUNNELS

Presentation

www.efectis.com

May 2019

FIRE IN RECENT TIMES

FIRE IN RECENT TIMES

Beneluxtunnel, Netherlands 10-05-2019

▲ De brand is inmiddels geblust. © Rijkswaterstaat

Uitgebrande vrachtauto verwijderd: Beneluxtunnel weer open

CONCRETE MIX

□ Thermally stable aggregate

- Granite, basalt
- Limestone (however spalls during cooling down)
- Avoid large grain diameters

□ Permeability

- Cement type
- Avoid micro-fillers
- □ Combination with steel / PP fibres

STRENGTH LOSS DUE TO INTERNAL MICRO-CRACKING

- □ Aggregate expands
- □ Cement paste shrinks
- Compression of aggregate grains, tension in cement paste
- □ Cracking of cement paste

POLYPROPYLENE FIBRES

- □ Can reduce spalling
- □ Strongly dependent on fibre type, geometry and mixing
- Usually still some spalling (melting at 170 °C)

Presentation

www.efectis.com

May 2019

EXTERNAL PROTECTIVE LAYER

Spray mortar / board material / coating
 Concrete temperatures are reduced

Presentation

www.efectis.com

May 2019

Efectis

BOARD MATERIAL

In rectangular tunnels

• Can be used as lost formwork

In circular tunnels

• Limited possibility to bend plates / also used as facetted lining

Presentation

www.efectis.com

May 2019

OTHER COMPONENTS IN THE TUNNEL

- Joints
- Cable ducts
- Ventilator fixings

www.efectis.com

May 2019

Efectis

VENTILATOR FIXINGS

Structural detail: fixing of ventilator to tunnel ceiling

- □ Spalling of concrete
- RWS curve

MOBILE FURNACE TESTS FOR EXISTING TUNNELS

Presentation

www.efectis.com

May 2019

FACTORS AFFECTING THE RESULT OF A FIRE TEST

□ FIRE CURVE

□ COMPOSITION OF CONCRETE

- Type of aggregate
- Moisture content

□ AGE

□ LOADING, LOADING FRAME OR PRESTRESSING STRANDS

□ PROTECTION

- PP FIBRES
- BOARDS
- SPRAY MORTAR
- COATING

□ SIZE OF THE SPECIMEN

CHALLENGES IN THE FUTURE

□ New energy carriers

- Electric
- Hydrogen
- LPG
- CNG

□ Challenges

- Battery
- Jet flame risk

29 October 2012, Wassenaar, Netherlands Presentation

Figure 1: Bus on fire (left) and shooting flame. (Source: Regio15.nl)

QUESTIONS

Contact: Kamakshi Parwani <u>kamakshi.parwani@efectis.com</u> Tel: +31 88 3473 732 Mob: +31 6 25 08 48 62

Presentation

www.efectis.com

May 2019

