

Kooy-symposium

Duurzaamheid voor de Krijgsmacht: Een operationeel vóórdeel!

Additive Manufacturing for industrial applications is rapidly gaining momentum

2

AM proposition to High Tech

Light weight

- Mass reduction
- Design optimization

Free form

 Design for optimal function and performance (especially flow and thermal design)

Reliability through high integration level

- Fewer BOM parts
- Fewer connections
- Avoiding difficult manual integration

Fast Design by lower NRE cost

- First product fast concept design confirmation
- Complexity at no additional cost
- Small series at no additional cost

Lean logistics

- Fewer parts
- Less spare parts stock
- Life cycle management
- Less transportation cost The impact of

Market demand grows; Additive Manufacturing need further refining for industrial use

To reap the benefits of AM, designers will need help from software

- Application of additive manufacturing typically begins with a thorough assessment of the product, its function and freedom to (re)design
- (Re)design starts with a functional model including domain, load cases and boundary conditions
- Optimization software (such as Topology optimisation) will generate a first draft based on optimal material distribution for the required performance
- The design engineer will evaluate and fine-tune the result & shape

ADDFAB

ADDFAB offers **engineering** and **3D metal printing services** and **supports** its customers in the technical and commercial trade-off between the **unique 3D printing feasibilities** and the established machining technologies.

3D printing unique features are:

- Weight reduction by creating hollow stiff structures (internal hollow structures)
- Design of complex and free form internal cooling channels (cooling optimization)

Our services include:

- Topology optimization and engineering services
- Prototyping both 3D printing (Additive Manufacturing) and machining
- Business case validation

AddFab is founded by 3 partners from the Dutch high tech supply chain

1. KMWE

2. NTS Group

Machinefabriek De Valk

Financial partner of AddFab

Network partner of AddFab

AddFab

AddFab

AM assessment

Design & engineering

Material & process selection

Prototyping & process optimisation

Parts manufacturing

Post processing

Parts supply & Distribution

Partners

3D Design & Engineering:

- Design for Additive Manufacturing
- Redesign
- Digitization/scanning
- Topology optimization
- Technology consulting

• ...

AddFab: Shared lab facility:

- Demand pooling
- Materials research
- Prototyping
- Process optimization
- Building strategy development
- Quality testing

• ...

Post processing & Supply (through partners):

- Production
- Assembly
- Supply
- Distributed printing
- ..

AddFab program designed to maximize exchange of application knowledge and experiences

Masterclasses	Design rules for AM, topology optimisation, AM building strategies, additive manufacturing principles, material testing, etc
Learning curve	(Bi-)monthly knowledge exchange sessions, presentation of printed products, experiences (partners only)
Knowledge Base	White papers, presentations, articles, contacts, lectures, etc
Open AddFab	Quarterly demonstration of AM processes to potential industrial users/buyers of AM

Design for Additive Manufacturing process

Feed Back & Reverse Engineering

Data Management

- File sharing
- Scanned Measurement
- Model Based CAD
- STL files

Design & Engineering

- Design rules
- Development design tools
- Optimize use of design freedom
- Take SLS limitations into account
- Prediction residual stresses

Work Preparation

- Build preparation
- STL repair
- Optimum orientation
- Minimum support structures
- Optimize support design
- Slicing & Hatching: develop methods for parameter optimization

Printing

- SLS
- Optimize process parameters
- Scanning strategies
- Post treatment

Quality Management

Material Analysis & Validation

Material
Characterization &
Specifications

Equipment Calibration & Performance

Process Parameters, Control

Process Monitoring Geometry, Roughness X-ray, CT scan for

internal channels

AM integration

- HSM&AM production
- Integration with conventional production
- Assembly enhancements

Sales

Quality Control

	File: E:\Scan Programs\3D Printen\M012-0-023- 001-0\Scan Results\Raw Scan.xlsm	Article Number:		Reference:	
WE _	Title:	Author:	Date Measurement:	Mat. Thickness:	Deviation Scal
	M012-0-023-001-0	Client:	Date Report: 16-4-2014	Probe Radius:	Report: obal Compare :

Quality Control

Powder Quality Control

Case Topology Optimisation

Case Topology Optimisation

Jet engine bracket challenge.

Additive Manufacturing solutions for Aerospace & Defense market

16

Focus Area

Weigth reduction & Stifness:

- 1. Hollow stif structures
- 2. Optimise resonant frequency
- 3. Topology optimisation

75% WEIGHT REDUCTION

Additive Manufacturing solutions for Semiconductor market

Focus Area

Complex components including internal cooling channels and internal structures:

- 1. Cooling channels (flow optimization)
- 2. Optimise resonant frequency
- 3. Topology optimalization
- 4. Cleaning of Channels (loose particles)

Additive Manufacturing solutions for Medical & Analytical market

Focus Area

Complex implant design incorporating articulated joints and dedicated features Mixing and transporting of fluids:

- 1. Scanning,
- 2. Value Engineering
- 3. Topology optimalization

Additive Manufacturing solutions for Medical & Analytical market

Focus Area

Complex implant design incorporating articulated joints and dedicated features

Mixing and transporting of fluids:

- 1. Scanning,
- 2. Value Engineering
- 3. Topology optimalization

Additive Manufacturing solutions for Industrial Automation market

Focus Area

Complex integrated components including internal cooling channels and internal structures. Mixing and transporting of fluids:

- Cooling channels (flow optimization)
- 2. Hollow stif structures
- 3. Optimize resonant frequency
- 4. Topology optimalization
- Cleaning of Channels (loose particles)

Printing Process: different technologies

3D Systems ProX300

SLM Solutions 280 HL

Future

- Focus on Industrial Additive Manufacturing
- Vertical Integrated Supply Chains (From powder to part)
- Application development
 - Integration of functions into one part
 - More complex parts
 - New design options will contribute to lower TCO

But lack of 3D printing expertise and lack of mature 3D printing technology are main challenges

So focus on: education, sharing of experiences and examples

ADDFAB

Fabriek van de Toekomst

Het businessmodel BIC

AddFab focus

Industrialisatie AM integratie voor post processing: frezen en meten

P2

Quality

Management

P3 Industrial applications Workshops e.d.

25

Arno Gramsma a.gramsma@addfab.nl