

PEM FUEL CELL TECHNOLOGY

Welcome KIVI @ Nedstack

22 January 2025 - Arnhem (NL)

Nedstack | Personal Introduction

Name	Jogchum Bruinsma	
Commercial Director 2018		
Since	2018	
Location	Arnhem – The Netherlands	

Role and Background

Role at Nedstack

- Responsible for Sales, Marketing and Service;
- Responsible for Customer Application Studies in the maritime domain.
- Responsible for Pursuing and Administering Class Approvals;

Other functions

- Chair of Zero Emission Shipping Technology Association
- Former Roadmap Leader for Waterborne at Hydrogen Europe;
- Former Member of STEERER Green Shipping Expert Group;
- Former Member of IEA-HIA Maritime task expert group

Background and Education

- 2 years at Huisman as Lead Engineer;
- 8 years at Boskalis as Senior Lead Engineer;
- First FC-Boat Application Project in 2010 at Alewijnse
- MEng in Control Systems Engineering HAN University
- BEng in Industrial Automation Studies HAN University

Nedstack | Table of contents

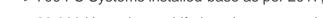
- A Company
- B Capabilities
- C Technology
- D Solution and Markets

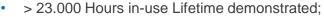
- F Hydrogen safety
- G Projects

Nedstack | Company Profile

Name	Carbon Technology Energies BV							
Location	Westervoortsedijk 73-VB, Arnhem, the Netherlands							
Founded	1999 2024							
Ownership	Privately							

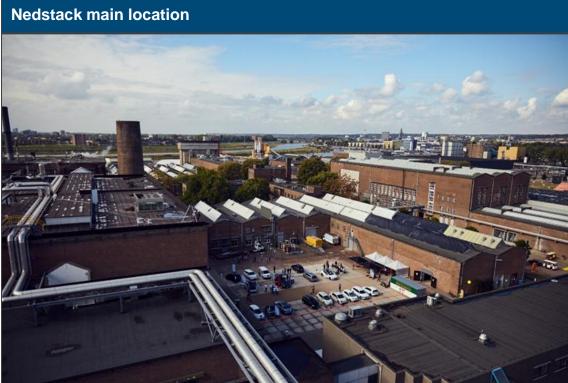
Website	www.nedstack.com							
Industry	PEM Fuel Cells							
Logo	Nedstack PEM FUEL CELLS							


High lights



- Independent Company since 1999, re-started in 2024
- Leading Global Player in PEM-FC R&D;

- In-house Cell plate production and Stack Assembly;
- > 700 FC Systems installed-base as per 2017;

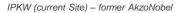


- Highly competent Application Support team in-house;
- Strong footprint in EU and maritime

Specialized in Industrialized Power Plants

Nedstack Heritage

>25 years of PEM Fuel Cell Excellence



In 1999, AkzoNobel and ECN jointly established Nedstack, combining AkzoNobel applied chemistry products with the fundamental PEM Fuel Cell expertise that was vested in ECN. In doing so they created a global first PEM-FC player with a commitment to high-power / high-use type PEM-Fuel Cell Applications.

In 2024, Carbon Technologies Energies continued Nedstack Fuel Cell Technology, strengthen it with their Carbon & Graphite production technology expertise

AkzoNobel - Velperweg Arnhem (first site of Nedstack)

Process & Systems Engineering

- Power Plant Process & Instrumentation Design
- **HAZOP & Safety in industry**
- **Process Engineering Capacity**

LT - PEM Fuel Cell Expertise & Technology

- PEM-FC Engineering & Test Expertise
- PEM-FC Testing laboratory
- Electro-Chemical Engineering Capacity
- Applied Membrane expertise

Material & Production Engineering

Carbon Technology Energies

- Carbon & Graphite Expertise
- Plate production technology Materials innovation centre
- Production innovation centre

■ PEM Fuel Cell Building Blocks from AkzoNobel Group – Advanced Chemicals

KETJEN

Carbon & Graphite Expertise

Catalyst Expertise

ENKA GLANZSTOFF

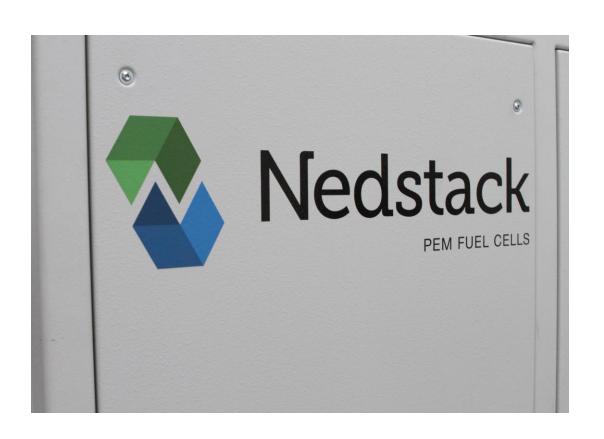
Polymers & lamination Expertise

AKZO ZOUT

Electrolyte Expertise

SIKKENS

Coating Technology


FCGF Motivation

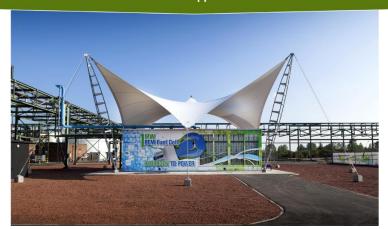
A FCGF is required to make the quantum leap

- Cost down
- Increase capacity
- Increase quality
- Global expansion
- Provide clean energy
- Create a sustainable business

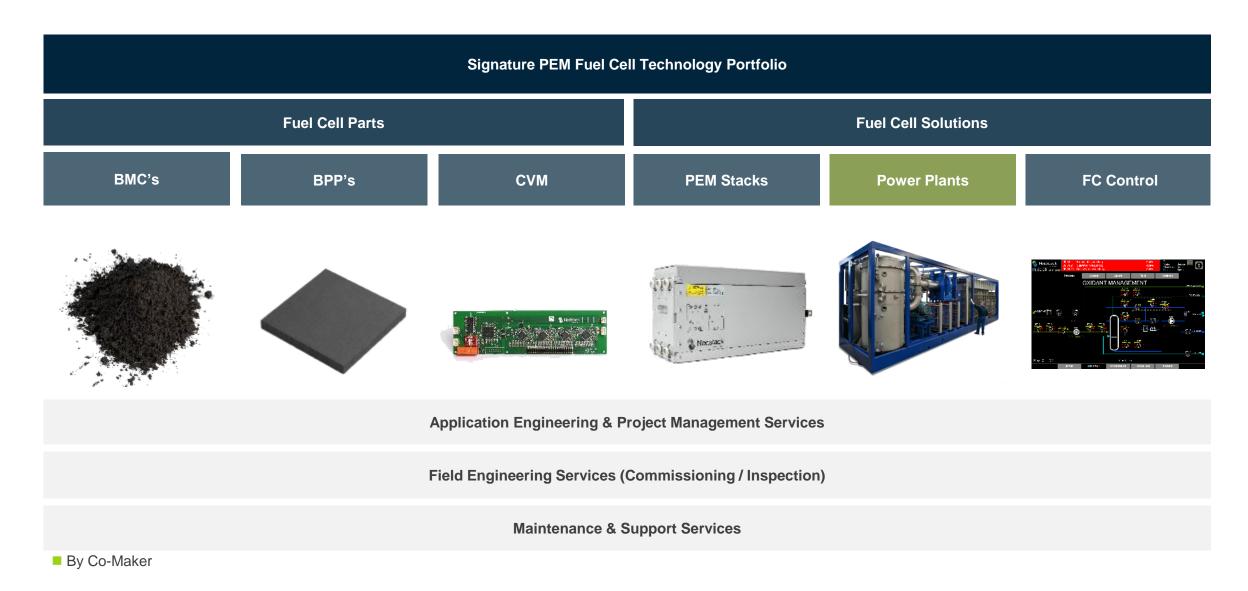
Project NextStep – Towards 1 GWe per Annum Capacity KIVI W

Industrialization Plan – Simultaneous Engineering

Nedstack | Fuel Cell Centre of Expertise


Fuel Cell Verification

Fuel Cell Application


Fuel Cell Manufacturing

Nedstack | Services Portfolio

Nedstack | LT-PEM Fuel Cell Principle

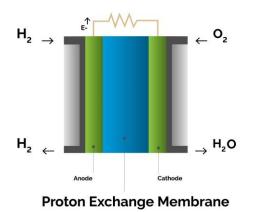
PEM FC's use Hydrogen as a Fuel and a PEM Membrane as Electrolyte

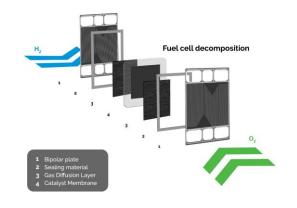
		Operating temp (°C)	Fuel	Electrolyte	
>	PEMFC	40-90	H ₂	Proton Exchange Membrane	
	AFC	40-200	H2	КОН	Noble metals
	DMFC	60-130	Methanol	Proton Exchange Membrane	Noble metals/ non-noble met
	PAFC	200	H_2	Phosphoric Acid	Non-noble met
	MCFC	650	CH ₄ , H ₂	Molten Carbonate	
	SOFC	600-950	CH ₄ , H ₂	Solid Oxide	

etals

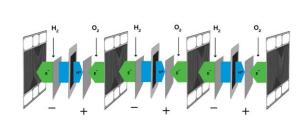
etals

Nedstack | LT-PEM Fuel Cell Stacks

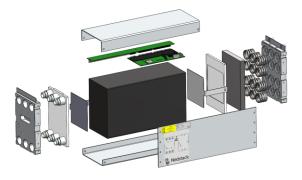



FC Stack Exploded View

PEM FC Principle


- > Emission free power generation
- > Gaseous Hydrogen (H2)
- > Oxygen (O2) from air
- > Produce electricity, heat and water

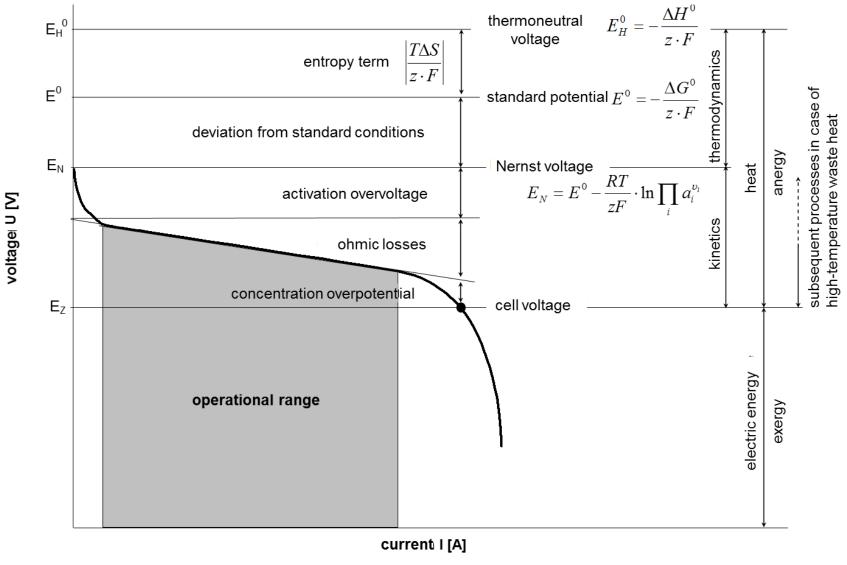
Fuel Cell Decomposition



- > Inhouse cell plate production
- > Flow fields distribute gases
- > Membrane Electrode Assembly
- > Cell plates are conductive

FC Stack Concept

- > Multiple cells are stacked
- > Cells are connected in series
- > A single cell produce > 200A
- > Individual cell voltage < 1VDC



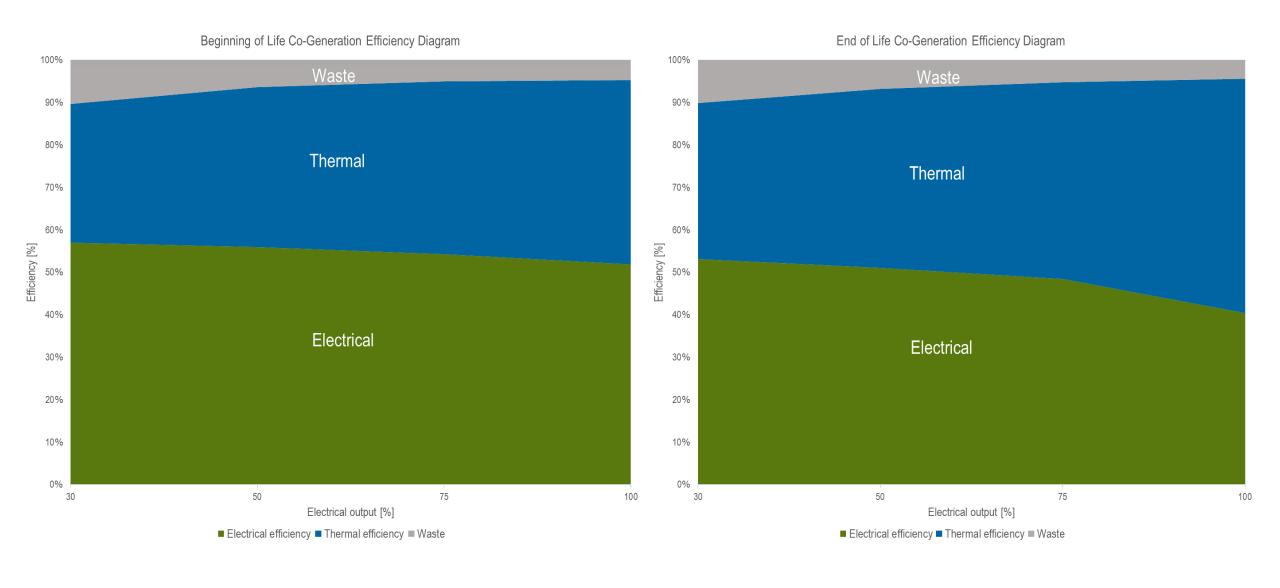
- > The stack of fuel cells is enclosed
- > Cell voltage monitoring is included
- > Quick connections for ease of service
- > Spring-loaded

Nedstack | Fuel Cell Co-Generation Principle



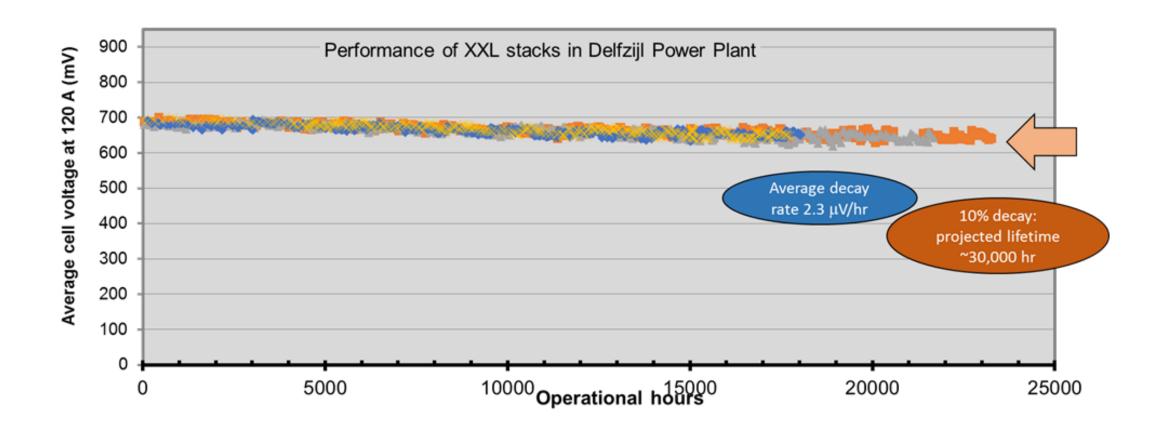
1) Nedstack Proprietary Model

Nedstack | Polarization curve



Nedstack | PEM Fuel Cell co-generation efficiency

Nedstack | Lifetime Assessment



Plant Lifetime Indication

Designed for 15 years

Stack Lifetime Indication

24.000 running hours till refurbishment

Nedstack | Fuel cell stack degradation

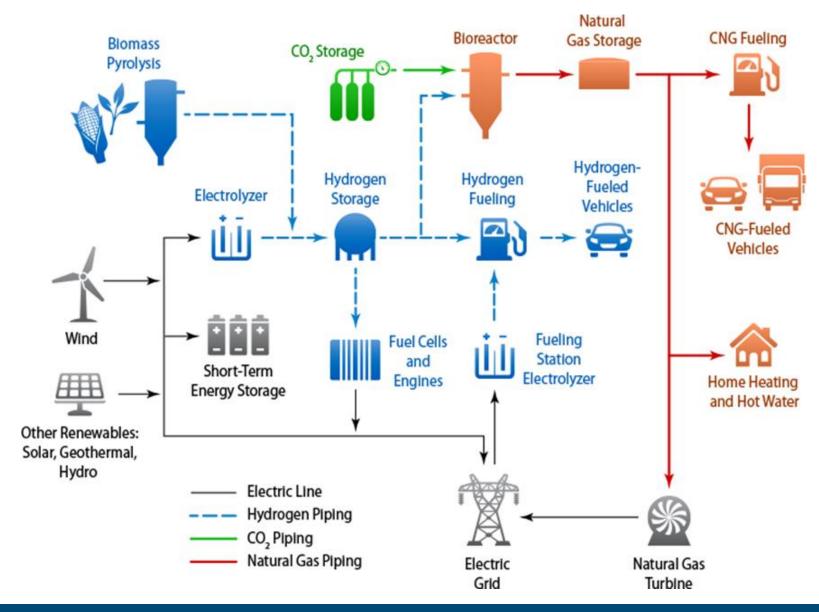
- Reversable decay
- Irreversible decay
- Material aging
- Hydrogen impurities
- Air contamination
- Cooling water contamination
- Catalyst oxidation
- Fuel starvation
- Cooling failure
- Membrane overpressure

Nedstack | Functional Definition

comptry = componentry, all relevant components

Nedstack | PemGen 120 FC power system

Nedstack | PemGen 600 FC power system



Nedstack | Hydrogen Economy

PemGen Focus Markets

Servicing the High-Power / High-Use Domain

Industry

Utility Power to Power

Distributed Power / RAPS

Maritime & Ports

PemGen - Focus Markets

- PemGen focus markets are focused at delivering technology and cost (LCoE) leadership for high-power / high-use markets.
- PemGen® pursues leadership at the utility scale level with power plants intended for 20 years in the field, having advanced safety concepts.
- The PemGen portfolio is tuned for either land-based use (in compliance with EC directives and IEC standards) or maritime use (in compliance with IMO codes, maritime Class Rules and IEC standards).
- The PemGen® business model assumes configure-to-order type technology delivery models where customer value is maximised.

Project NextGen – The new standard in maritime fuel cell kıvı 😵

SH2IPDRIVE

Developing a next generation of maritime fuel cells

Innovative hydrogen technology

WP1

BUNKER & STORAGE SYSTEMS

Leader: Shell

Partners: FPS, TUD, Bosch, Cryovat, H2Storage

WP2

HYDROGEN CARRIERS

Leader: TU Delft

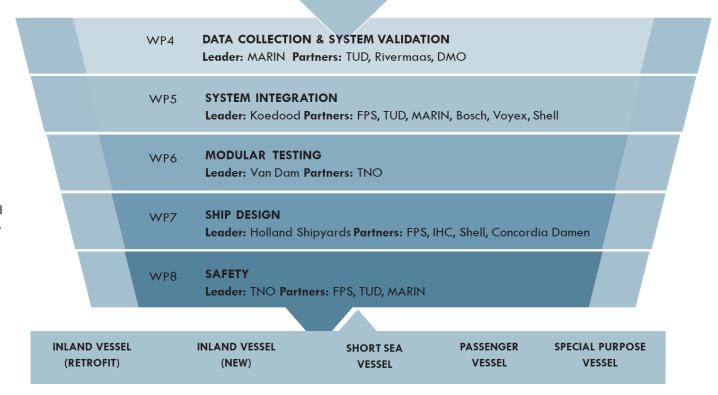
Partners: H2 CiF, H2FUEL, Royal

Roos, SH, UvA, Voyex

WP3

FUEL CELLS

Leader: Nedstack


Partners: FPS, TUD, UT, Koedood,

TNO, Encontech, TU/e, Shell

Modelling, validating and evaluating integrated hydrogen systems

Validating hydrogen systems in sea trials

Application of validated hydrogen systems in ship design

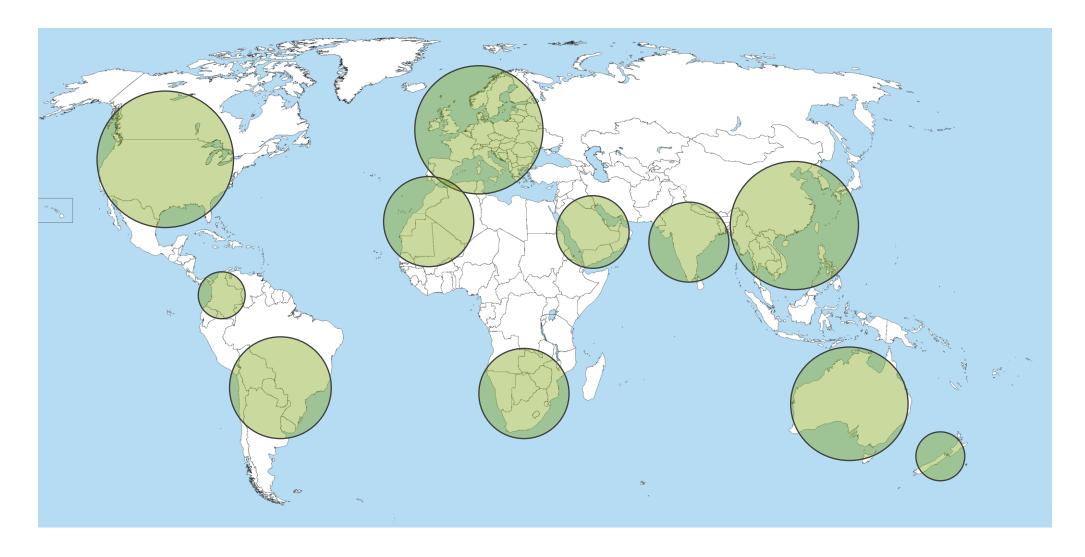
UNIVERSITY OF TWENTE.

Collaboration between FC design powerhouses

Project NextGen – The new standard in industrial fuel cell kivi Williams Higher efficiency, power density, lifetime > lower costs

Nedstack
PEM FUEL CELLS

- Prime power: 900 kW @ 50% net efficiency
- Nominal power: 700 kW @ 52% net efficiency
- Modular FC and auxiliary systems
- Integrated DC/DC converter 800 VDC output
- Anticipated dimensions
 - Footprint: 4 [m²]
 - Height: 2,1 [m]
 - Weight: 4300 [kg]
- Integrated multi-MW control system
- Hydrogen inlet pressure: > 2 bar
- Market introduction: Q2 2025



International developments: H2 strategies

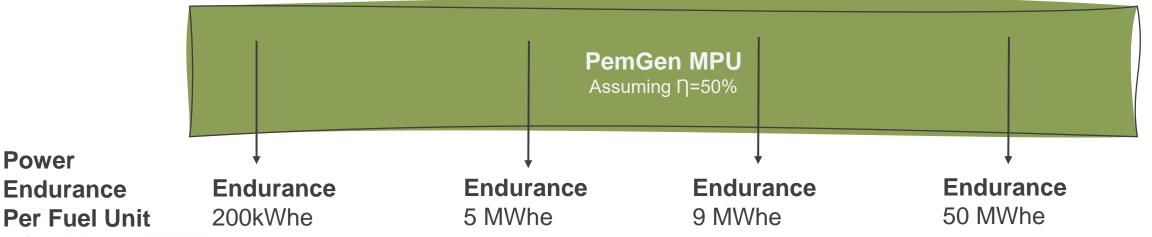
Market potential for H2 production and use is massive

1E. How is H2 Available Today? **Mostly in Compressed solutions**

H2-Fuel Feed Strategy

Power

Bundle 30 Mpa ~ 12 kg


Tube Trailer 30 Mpa ~ 300 kg

MPED Container 50 MPa 20' MPED ~550 kg

Cryogenic Trailer Cryogenic ~ 3000 kg

1 kgH2 = 33.33 kWh LHV

Nedstack | Hydrogen properties

 Density 	0.08988 kg/m3	14 times lighter than air
Boiling point	-252.87 °C	Boiling point Nitrogen is -195,79 °C
 Auto ignition temperature 	500 °C	Auto ignition temperature of diesel is 210 °C
 Energy density 	33.33 kWh/kg	On average 16,5 kWh electrical energy
 Lower explosion limit 	4 %	Wide range requires caution
 Upper explosion level 	75 %	Diesel ranges from 0,6% – 7,5%

Nedstack | Key safety considerations

- Collision
- Fire
- Purging
- People
- ...

518 kg - 500 bar

0,03 kg - 0,25 bar

Nedstack | Safety concepts

Diluted concept with Emergency Shutdown (Ventilation)

Explosion safe

Inert

NEN-EN-IEC 62282-3-100:2020

EUROPEAN STANDARD

EN IEC 62282-3-100

NORME EUROPÉENNE EUROPÄISCHE NORM

April 2020

ICS 27.070

Supersedes EN 62282-3-100:2012 and all of its amendments and corrigenda (if any)

English Version

Fuel cell technologies - Part 3-100: Stationary fuel cell power systems - Safety (IEC 62282-3-100:2019)

Technologies des piles à combustible - Partie 3-100: Systèmes à piles à combustible stationnaires - Sécurité (IFC 62282-3-100:2019) Brennstoffzellentechnologien - Teil 3-100: Stationäre Brennstoffzellen-Energiesysteme - Sicherheit (IEC 62282-3-100:2019)

This European Standard was approved by CENELEC on 2019-03-19. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Nonway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

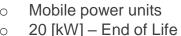
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members

Ref. No. EN IEC 62282-3-100:2020 E

Nedstack | Risk assessments

S) Component	Description	Functionally	O peretion mode	Potental fellure mode	Potenti al Effect(s) of Fall ure	Severity	Potential Cause/Mechanism(s) of Failure	Occumence	Current Design / Process Control s	Livelhood	Risk level	Remerks / comments	New militgetion actions	Seventy	Final ris	ok essess Detection	ment Uvelhood	Risk level
FUEL CELL MODULE	Τ		Ι	Ι		г	Mishending during transport and	_	inspection on delivery, installation and	_		1	T				_	
				Lack of mechanical	Physical demage to system components or	4	Install ation 1 Doonhatch opened 2	-	SAT; un derp ressure switch in fuel cell 1 space will detectif housing is gas tight. Un derp ressure s witch in fuel cell space 2	1 2	4						-	4
		Me chanical protection	Operation	protection	stacks caused by objects entering fuel cell system	4	Housing he evil y corroded 1	٠, ١	will de te ct if housing is gas tight Marine grade conservation, regular in spection; underpressure switch in fuel cell space will detect if housing is gas	1	4							4
	Linuxing around the first cell	The mel I sole ton	Operation	Decreased the must insulation	n if fire occurs in fuel cell space, it will sooner in propagate to adjacent spaces	2	Mishendling during trensport and Installation	1	tight Inspection on delivery, installation and SAT	1	2							2
Housing	Housing around the fuel cell system including the fuel cell module, belence of plant and electrical cabinets and	Ges confinement	Al	Housing contains gas leaks	In case of a care last, burleycen or declared		Mishandling during main tenance 1 Mechanical damage to housing 1		Reguler inspection 1 Underpressure's witch in fuel cell space will detect if housing is gas tight	1	3							3
	comparitn ents	Fixation of plant components	Al	Components coming loose, whether or not pertially	Diamage to system components			1	Fixation boils tightened at a specified torque; luck nuts applied where 2 possible; regular in spection	1	2							2
				and the de new persons			Broken fixation 1		Regular Inspection 1	1	2			\vdash	-	\rightarrow	_	2
		Plent fixetion	Al	Rxation loose, whetherorn o	Gas leakage System exposed to excessive vibrations				Fixation boils tightened at a specified torque, luck nuts applied where 2	1	2						T	2
				pertially		,	Broken fixetion 1	1	possible; regular in spection Regular inspection 1	1				\vdash	-+	\rightarrow	_	2
		Grounding	Al	No grounding	In case an electrical connection between stacks and houding occurs, housing will be underhigh voltage		Corrosion 1 Meichenical damage caused by mishandling 1	1	Ground to ult protection system	1	3							3
Interface connections			Al	Mechanical da mage	External damage to piping and cabling	2	litems falling on piping, cables 1	1	Inspection before startup 1	1	2							2
FUEL CELL STACK			<u> </u>		entering the fuel cell system									ш				
, vec vectorion	Membrane	Conduct protons from enade to ce in ade		Loss of proton conductivity	Low cell vollege(s), thus low efficiency	2	MEA temperature too high / too low 1 Me mibrane deh ydration 2	1	The coolent temperature Is monitored on the Inlet manifold and the on the outet menifold. Individual cell temperature deviations can not be 2 observed, ho lever, these will probably show a low cell voltage reading for the corresponding cell	1 2	2							2
	Catalyst	Enable the chemical reactions to		Loss of cetalysis	_	2	Oxydeton of cetalyst 1	1	2	1	2							2
		take place	 		-	2	Physical damage to catalys tilayer 1	1	The CVIVI measures individual cell voltages can be 2	1	2		+	\vdash	+	+	-	2
	Catal yst sup port	Carrier of the catalyst	1	Loss of cetelyst			Fuel stanvetion 1	1	observed, however, the root cause can 2	1	2			М	\neg	\neg		2
MEA	GDL	Distribute glasses a cross active a rea		Une ven gas distribution across a ctive area	Local fuel stanvetion, potentially damaging the stack if this occurs at the anode side		GDL diagged by particles 1 GDL flooded with water 1	1	notibe determined 2	1	2				4		4	2
Men		Offerelectrical insulation between a node and cathode		No electrical insulation between an ode and cathode side	Leek current will fow from cathode to a node cell plate, possibly causing hot spots in the cell plate, possibly leading to melting plates on fire	,	Border da mage d combine d with contamin ation 1	1	A leak current from one to enother cell will not be defected if this current is relatively low compared with the stack current	1	3							3
	Membrane, border					2	Pinholes in membrane 1	1	Pinholes in membrane will cause ad ditional hydrogen-crossover, thus lead to lower cell voltage, reduced OCV 2 and increased voltage decay	1	2		in clud e reguler in dividual cell OC V check					2
		Keep hydrogen (anode) and air (cathode) separated from each other				0	0	0	0	0	#REP							#REF!
		C and act electron s	Commissioning	low current and brvoltage	Lowerpoweroutput, low efficiency	2	-poor reactant distribution due to blockage/particles in the fow field	5	cell voltage drop 2	3	3		in corporate stack interface filters during commissioning & start up					3
		C and uct heat from MEA to coolen		H2 leakage (in side the stack)	fuel stanvation, accelerated stack degradation		cell plate permeable (can be due to ruptures, cracks, creep)		excess statch & monitoring thereof, cell 2 voltage drop	2	4							4


Fuel cell power installations With our co-makers, we deliver today

PEMGEN 600 **MPU-20 PEMGEN 120 PEMGEN 300**

- Maritime and stationary
- 120 [kW] End of Life

- Inland navigation
- 300 [kW] End of life

- Maritime and Stationary
- 600 [kW] End of Life

Jogchum Bruinsma

Commercial Director

Carbon Technology Energies B.V.

Westervoortsedijk 73-VB, NL-6827 AV, Arnhem

Phone: +31 630 03 23 19

E-Mail: jogchum.bruinsma@nedstack.com