

This is what energy poverty looks like.

A CAN

PBL Netherlands Environmental Assessment Agency

Towards universal electricity access in Sub-Saharan Africa – Technology & investment requirements

Paul L. Lucas Anteneh G. Dagnachew Andries F. Hof

Twitter: @Antex_GD

http://eoimages.gsfc.nasa.gov/

Content

Introduction

Why?

Methodology

How?

Results

What?

Discussion and conclusion

Introduction

Energy- enabler for basic human needs

Correlation between HDI, electricity consumption, and electricity access

Energy features prominently in international goals and agreements Sustainable Development Goals

United Nations Framework Convention on Climate Change

Agenda 2063

Paris Climate

Agreement

ELECTRICITY ACCESS 2010

Sub-Saharan Africa

~280 MILLION WITH ACCESS

>600 MILLION WITHOUT ACCESS

ELECTRICITY ACCESS 2010

e F

63% Urban has access

Methodology

ELECTRIFICATION MODEL

0.5°X0.5° GRID-CELL

Decision tree to determine the lowest-cost electrification system

DISTANCE TO POWER LINE

Million people

RENEWABLE ENERGY RESOURCES TECHNICAL POTENTIAL

DEVELOPMENT IN RENEWABLE ENERGY PRICES

RENEWABLE ENERGY RESOURCES ECONOMIC POTENTIAL

PWh/year

Renewable energy economic potential for under 0.20USD/kWh in 2010

RENEWABLE ENERGY RESOURCES ECONOMIC POTENTIAL

RENEWABLE ENERGY RESOURCES ECONOMIC POTENTIAL

SCENARIOS

Baseline (BL) ---- Business-as-usual

Universal access (UA) ---- Electricity access for all in 2030

Universal access with climate mitigation policy (UA-CP) ----

Stringent global climate policy in a form of carbon tax

Results

ACCESS RATE - SSP2

MANANANANANAN *MANANANANANANANANAN* **ዀዀዀዀዀዀዀዀዀዀዀዀዀ ዀዀዀዀዀዀዀዀዀዀዀዀ**

830 MILLION WITH ACCESS

Regional differences

Urban-Rural differences

515 MILLION WITHOUT ACCESS AND A

PBL Netherlands Environmental

Assessment Agency

ACCESS RATE - SSP2

URBAN 88% HAS ACCESS

RURAL 36% HAS ACCESS

HOUSEHOLD DEMAND 2030

TOTAL RESIDENTIAL DEMAND

TOTAL RESIDENTIAL DEMAND

TOTAL RESIDENTIAL DEMAND

<u>AUA</u>

PBL Netherlands Environmental Assessment Agency

ELECTRICITY SYSTEM-MIX

At a very low consumption level (Tier 1-4.5kWh)

At projected consumption levels based on GDP per capita, fuel prices, appliance efficiency, etc..

>110 mil more people off-grid

CLIMATE CHANGE MITIGATION POLICY

Niger, Chad, Ethiopia, Somalia, Angola, Namibia & Madagascar rely largely on standalone systems Southern and Western Africa can be economically connected to the central grid

A considerable shift from fossil fuel to renewable under UA-CP!

0.7%

The contribution of SSA's residential sector to global emissions in 2030

Sub-Saharan Africa regions

- The rest of southern Africa
- Republic of South Africa
- Eastern Africa
- Western & central Africa

FUEL MIX

25-120% increase

The higher the fossil fuel share in the mix, the higher the cost increase

ELECTRIFICATION INVESTMENT

Baseline requires 16-19 billion USD/year

Universal access needs 27-33 billion USD/year

70-80% goes toward T&D

+ recurring costs- fuel, O&M

Discussion & Conclusion

CONCLUSIONS

- Business-as-usual ≠ Universal electricity access
- Synergies between climate mitigation and universal access to electricity
- Imposing carbon price can increase electricity prices in the regions
- The increase in CO₂ emissions due to achieving universal electricity access is small
- Achieving universal electricity access requires at least a tripling of the current annual investments
- Decentralized systems will play an important role to meet the SDGs

STRENGTHS

- high resolution data
- dynamic elec. consumption levels
- various technologies

UNCERTAINTIES AND WEAKNESSES

- socio-economic projections
- some aggregated variables
- simplified network design

DRI Netherlands Enviror

Netherlands Environmental

PBL Netherlands Environmental Assessment Agency

www.pbl.nl

Twitter: @Antex_GD

Thank you

SHARED SOCIO-ECONOMIC PATHWAYS (SSP)

SHARED SOCIO-ECONOMIC PATHWAYS (SSP)

IMAGE-TIMER MODEL

Western & central Africa

Republic of South Africa

OREN

HydroWind

Solar

Biomass CCS

Natural Gas CCS

Natural Gas

Oil CCS

Coal CCS

• Share of RES

Oil

Coal

BiomassNuclear

PBL Netherlands Environmental Assessment Agency Eastern Africa

The rest of southern Africa

UTOPIA:

Sustainable development, low population growth, high economic growth, high urbanization, emphasis is on human wellbeing

63%

57%

DYSTOPIA:

Extereme poverty, regional rivalary, moderate economic growth, rapid growing population, emphasis on national security

SOLAR IRRADIATION

6.0-7.0 5.0-6.0 4.5-5.0 4.0-4.5 3.0-4.0 2.5-3.0 1.5-2.5

kWh/m²/day