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“Low Energy Buildings” 

 Building codes, frameworks, regulations… 
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 Low energy buildings 
Net-zero energy 

Plus-energy 

Zero energy district 

Climate adaptive 

Net-zero 
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Turner et al (2008), LEED certified office buildings. 

 Energy performance deviation 
 

Measured = Predicted 

Measured < Predicted 

Measured > Predicted 

Low energy buildings tend to 
consume more than 
predicted!!! 
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 Overheating risks in summer 
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o Highly insulated and air tight building envelopes 
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 Plausible reasons 
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o Current design practice 
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Design phase 

Historical weather data 

Future (operational phase) 

 …  … … 

Climate change, heat wave… 

 …  … … 

 …  … …  …  … … 

 …  … … 

 
 Not meeting intended 

performance in the future 
 
     NZEB today ≠ NZEB future 

 
 

 Risk of failure of energy 
(e.g. HVAC) systems 
 
 

 Thermal discomfort 

 Plausible reasons 
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o Robust designs 
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Design phase Future (operational phase) 

 …  … … 

 …  … … 

 …  … …  …  … … 

 …  … … 

 
 Not meeting intended 

performance in the future 
 
     NZEB today ≠ NZEB future 

 
 

 Risk of failure of energy 
(HVAC) systems 
 
 

 Thermal discomfort 

Solution 

Large PV and HVAC 
systems 

 Oversized systems 
 Very high investment 

costs  
 Not “smart” approach  

 Plausible solution 
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Climate change, heat wave… Historical weather data 
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• Less variations in 
energy consumption 

• Comfort conditions 

To ensure intended 
performance in the 

future 

• Uncertainties in 
occupant behavior 

• Climate change 

Performance 
robustness 
assessment • Minimizes 

performance variation 

• Intended performance 
in the future 

Robust designs 

 Smart approach 

 Computational (building performance and energy system simulation) 
performance robustness assessment methodology is developed 

 Research methodology 
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 Building performance and energy system simulation 
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Decision 
maker 

Formulate 
scenarios 

Define design 
space 

Computational based 
performance robustness 

assessment 

Set of 
robust 

optimal 
designs 
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 Performance robustness assessment methodology 
 

Using multiple 
performance 

indicators and 
their 

corresponding 
robustness 

Preferred 
robust 
design  
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1. Thermal comfort 
2. Operational (global) cost 
3. Additional investment 

cost 
4. Onsite energy matching 
5. CO2 emission reductions 
6. Peak loads 
……. 

 Decision makers 
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Occupant scenarios 

Climate scenarios 

 Future scenarios 
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 Building designs 

Energy demand, kWh/m2a 
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 Performance assessment 

Multi criteria assessment 

 Multiple performance indicators 
1. Overheating hours [h] 

2. Global cost [€/30 years] 

3. Additional investment cost [€] 

 

 Performance robustness 
 

 

Additional investment cost 
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 Selection of robust designs 
Identified using methods (e.g. Mini-
max regret method) adopted from 
risk analysis, structural design etc. 

 
 Decision maker can choose a design 

based on actual performance and 
performance robustness and trade off 
with additional investment cost required 
for the design 
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 Practical use - suitability and usability assessment 
 with users group 
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 Overview 

Scenarios 

Designs 

Performance 
assessment 

Additional investment cost 
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Preferred design with 
optimal performnace and 
performnace robustness 
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 Case study for demonstration of methodology  

Existing corner terraced house that needs to be renovated 
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Additional investment cost 

Design variants House built in 

1992 
Renovation measures 

Rc Wall, m2K/W 2.53 3 - 10 

Rc Roof, m2K/W 2.53 3 - 10 

U window, W/m2K 2.8 2.4 - 0.4 

Infiltration, ach 1 0.12 – 0.36 

PV system, m2 -- 16 - 31 

Heating system Gas boiler Air source heat pump 

Ventilation system Mechanical 
extraction 

Balanced system with 
heat recovery 

DHW system Gas boiler Solar, 1 - 6 m2 

18 - 22°C 

All day, evening 

1 - 4 

1 - 3 W/m2 

1 - 3 W/m2 

60 - 180 L/p/day 

ON/OFF 

G, W, G+, W+ 

Scenarios 
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 Case study for demonstration of methodology  
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 Selected renovation options for demonstration 

Rc wall = 4m2K/W 
Rc roof = 5m2K/W 

Uwindow = 1.43W/m2K 
SHGC = 0.75 

PV system = 31m2 

WWR = 40 
Infiltration =  0.36ach 

Additional investment cost= 22 k€ 

Rc wall = 5m2K/W 
Rc roof = 6m2K/W 

Uwindow = 1.01W/m2K 
SHGC = 0.4 

PV system = 27m2 

WWR = 40 
Infiltration =  0.24ach 

Additional investment cost= 28 k€ 

Rc wall = 10m2K/W 
Rc roof = 10m2K 

Uwindow = 0.4W/m2K 
SHGC = 0.4 

PV system = 23m2 

WWR = 40 
Infiltration =  0.12ach 

Additional investment cost = 41 k€ 

Medium insulation Low insulation Very high insulation 

INTRODUCTION – PROBLEMS – ROBUST DESIGNS – METHODOLOGY – CASE STUDY – RESULTS – SUMMARY 
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 Performance assessment 

1. Overheating hours (h) 
 Tindoor > Tmax 

 
 Weighted for every excess 

degree (Tindoor-Tmax)*h 
 
 
 
 
 

 
 

 
 
 

Peeters et al., (2009), Applied Energy   

2.  Additional investment cost (€) 
 Cost of renovation (e.g. cost of insulations, windows, air tightness, DHW system, 

PV system) 

 

 
 

3. Global cost (€/30 years) 
 Investment + Replacement + Maintenance + Operating costs 
 Calculated for 30 years period – service life span of energy systems 
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 Results - global cost 
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 Results - global cost 

22 k€ 28 k€ 41 k€ 0 k€ 
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 Results - overheating hours 
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 Results - Policy maker - CO2 emission reductions 
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 EF = CO2 emission 
factor 
 

 Embodied emissions 
are not taken into 
account 
 

 Negative emissions  
indicate reduction of 
emissions by building 
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 Preferred robust design* 

Rc wall = 4m2K/W 
Rc roof = 5m2K/W 

Uwindow = 1.43W/m2K 
SHGC = 0.75 

PV system = 31m2 

WWR = 40 
Infiltration =  0.36ach 

Additional investment cost= 22 k€ 

Rc wall = 5m2K/W 
Rc roof = 6m2K/W 

Uwindow = 1.01W/m2K 
SHGC = 0.4 

PV system = 27m2 

WWR = 40 
Infiltration =  0.24ach 

Additional investment cost= 28 k€ 
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* Preferred robust designs among three selected renovation options. Robust designs might vary if  
   the whole design space is considered. 



 

 This work presents a novel methodology for identifying robust 
building designs 
 

 Compared to conventional design practice, this method 
o ensures intended performance in the future – towards future 

proof buildings e.g. NZEB today = NZEB future 

o guarantees required comfort conditions 

 

 Using the current methodology, a decision maker can  
o choose a robust design by prioritizing a performance indicator 

o carry out a trade off with robustness of other performance 
indicators 

o trade off between additional investment to improve:  

– building insulation levels 

– energy generation systems 

– robustness of the design 
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Regulations and frameworks  

Robust design 

Robust design 
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 Regulations and frameworks 
aim for very high insulated 
buildings 
 

 Overheating risks are 
observed in these buildings 
 

 Are they future proof? 

 Low insulation buildings are 
more preferred robust 
designs for homeowners 

 Medium insulation buildings 
are more preferred robust 
designs for homeowners 
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Thank you 
Questions? 

 
r.r.kotireddy@tue.nl 

 

mailto:r.r.kotireddy@tue.nl
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Robust buildings 
 
     In the present context 

“A building is robust if it is able to handle uncertainties 
in building operation and external conditions and 
delivers intended performance (energy, comfort…) ” 

Introduction 

In this work, the focus is on performance (energy, comfort etc.) robustness rather than 
structural robustness of a building 
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Robust building designs 
 
     Advantages 

• Guarantees required performance for the whole 
building life span 
 

• Reduces the performance gap between predicted 
and measured 
 

• Enhances decision making process - making 
informed choices among different building designs 
 
 
 
 
 

Introduction 


