Short-Range Optical Wireless Communication

Eduward Tangdiongga Associate Professor on Optical Access and Local Area Networks Electro-Optical Communication Systems Contact: e.tangdiongga@tue.nl

Webinar 30 November 2021 on "Recent Advances in Optical Communications"

Outline

- 1. Motivation for Optical Wireless Communcation
- 2. Advantages, Applications, and Standardization for OWC
- 3. Safety requirements and Link Budget
- 4. VLC/LiFi and the Next Generation
- 5. Summary and Ongoing Works
- 6. Q&A Session

Optical Wireless Communication in The Netherlands

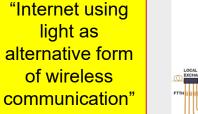
TU/e

Ton Koonen

Eduward Tangdiongga

Stratix

Sitse van der Gaast


Henny Xu

https://www.agentschaptelecom.nl/documenten/rapporten/2018/02/07/onderzoek-lifi

Stratix TU/e

Report by Stratix and TU/e

Optical Wireless Communication: options for extended spectrum use

Report commissioned by the Dutch Radio Communications Agency (Agentschap Telecom) Ministry of Economic Affairs and Climate policy

Hilversum, 24 December 2017

Motivation

Two major drivers in the telecommunication business

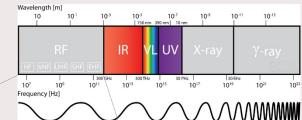
- Wireless traffic has grown faster than Moore's law since 1904
- Spectrum crunch is imminent, telecom growth cannot be accommodated unless
 - 1. We apply very **dense** spectral reuse in small cells without interference
 - 2. We find ways to accommodate very high speeds

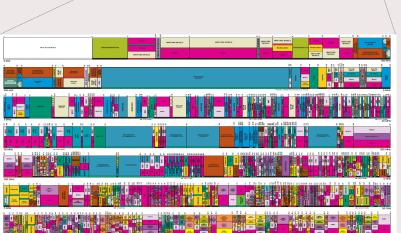
Optical wireless is in an excellent position to solve both due to light <u>small footprints</u> and <u>huge available spectrum.</u>

History of Visual-based Communication

• The use of sunlight:

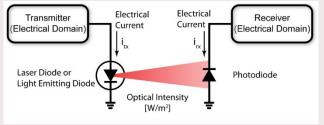
Heliograph: information delivery using reflecting mirrors of sunlight


- The use of fire or lamp:
 - o Beacon fire
 - o Lighthouse
 - Signal lamp for ship-to-ship communication
- OWC or FSO: the use of LEDs and lasers (since 1960) for increasing capacity and ranges, including LiDAR
 - Disappear in 1970's due to introduction of fiber-optics technology
 - Reappear in 2000's for various reasons: higher capacity, lower costs, lower power consumption etc



OWC Advantages and Standardization

- Large bandwidth capacity per wavelength
- Unregulated spectrum (100's THz)
- High-degree of spatial confinement
 - o High re-use factor
 - o Inherent security
- Robustness to EM Interference → can be safely used in RF restricted areas (hospitals, airplanes, spacecraft, industrial areas etc)


• Standardization:

• ITU-T G.9991: OWC for Home Networking

• IEEE 802.15.13: Multi-Gbps OWC

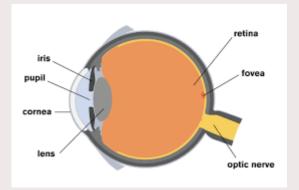
OWC Basics

• Transmitter:

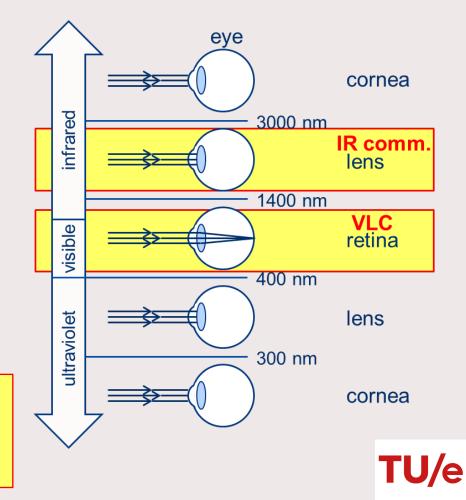
- Baseband processing in electrical domain
- Electrical-to-Optical Conversion
 - Laser: small Field-of-View (FoV) and restricted to Line of Sight (LoS)
 - LED (large FoV and LoS / non-LoS)

Receiver

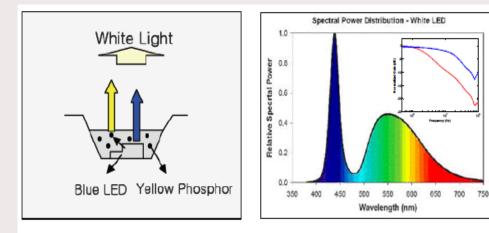
- Optical-to-Electrical Conversion (Photodetector, Image Sensor or Camera)
- Baseband processing in electrical domain
- Amplitude constraints
 - Non-negativity of optical signal
 - Eye-safety regulation for light source

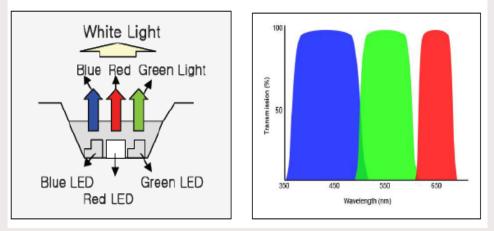


Eye Safety and Link Budget


eye safety (ANSI Z-136 series and IEC 825 series)

	max. power	max. power
	@ λ=880nm	@ λ=1550nm
Class 1	<0.5mW	<10mW
Class 1M	<2.5mW	<150mW
Class 3R	<500mW	<500mW


IR communication vs. VLC:


- allows higher optical transmit power
- higher photodiode sensitivity
- less interference from ambient light

Higher - Link Budget

Visible Light Communication / LiFi: LED types

Blue LED + phosphor

- Blue LED is fast (BW≈ 20MHz, EQ 100MHz)
- Phosphor is slow (BW \approx 2MHz)
- Low cost
- Simple driver
- Use blue filter at Rx
- Lab results <2 Gbps w/ advanced modulation

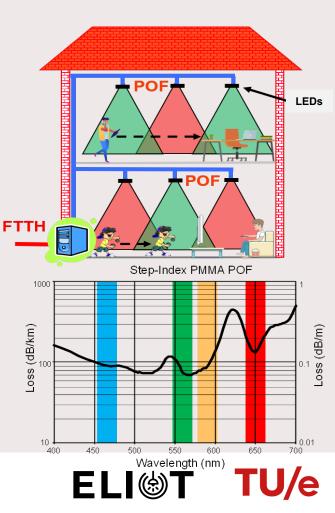
R+G+B+(Y) LED

- 4x data speed by wavelength multiplexing
- BW \approx 20MHz per colour
- Higher cost
- More complex driver
- One Rx per colour
- Lab results < 8 Gbps w/ advanced modulation

Commercial LiFi Products

11

Bidirectional Down- and Upstream <3m Data rates 250 Mbps – 1 Gbps


TU/e

WDM-over-POF as front-haul for LiFi

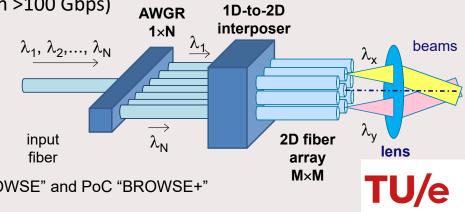
Wavelength Division Multiplexing technique:

- o Increase POF throughput: sum of data rate per wavelength
- Create multiple services: different wavelength for different services
- \circ $\;$ Route services to rooms inside buildings
- Enable Multiple Input Multiple Output (MIMO) technology by assigning each MIMO channel per wavelength for
 - Avoiding blocking and extend coverage areas (spatial diversity)
 - Increasing link capacity per user (spatial multiplexing)
 - Enabling smooth handover between coverage areas

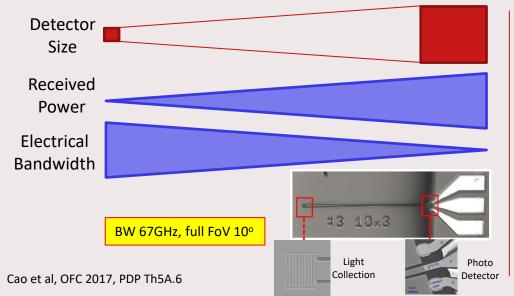
Current LiFi system uses PLC, TP or CAT-5 as front-haul → limited capacity

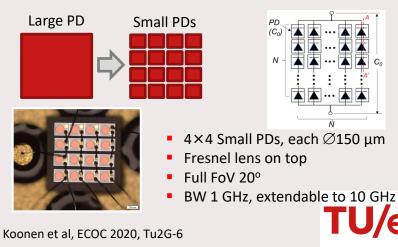
Next Generation LiFi

Using narrow but steerable optical beams

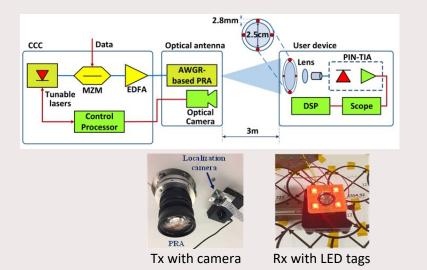

- Pencil beams from lasers, thus no LEDs
- Each user gets a beam
- Infrared, telecom wavelengths (1400-1700nm)
- Steering: a tunable wavelength laser + gratings
- \rightarrow each user gets a wavelength channel
- \rightarrow easy scalable to many beams, just add λ s
- Ultra-high throughputs >10 Gbps / beam (Labs shown >100 Gbps)
- Fast and accurate localization technique
- Large aperture and large field-of-view receiver

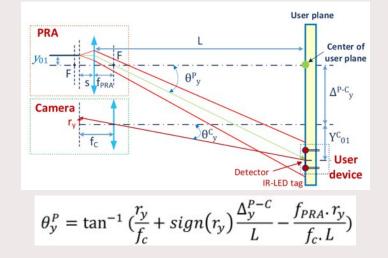
Ton Koonen 2012-2019, ERC AdG "BROWSE" and PoC "BROWSE+"


2D beam steerer @ room's ceiling

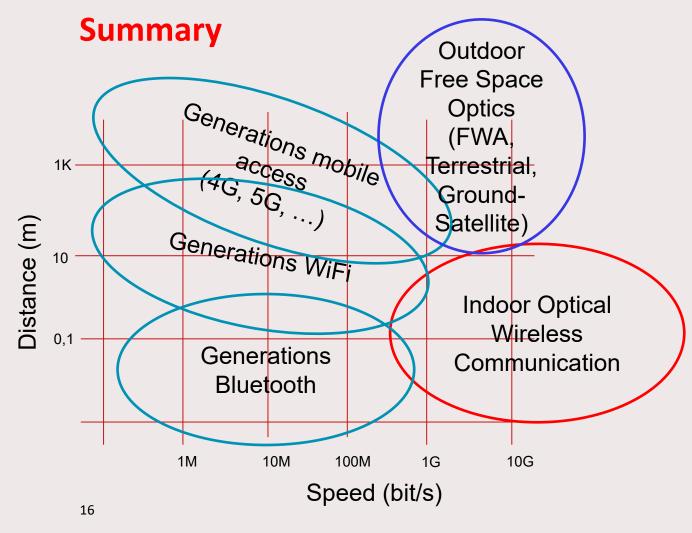

Wireless Receivers

Desired properties: sensitivity, bandwidth, and large Field of View


- Simple form of optical wireless receiver is camera, but limited by frame rate and sensitivity
- Combination between lenses and semiconductor detector forms an optimal solution
 - Lenses for capturing light as much as possible
 - Semiconductor for increasing bandwidth and sensitivity
- Relation between detector size, RF bandwidth and receiver power



Array of PDs in series and parallel connection


Localization and Tracking Techniques

A camera allows for localization and tracking of multiple users

- Red/Near-IR LED beacon with 4-LEDs tag and a high-speed camera (200 fps)
- Fast localization with the updated rate of 5ms real-time user localization
- Localization accuracy of 0.02° (<1mm deviation at 3m)
- Upstream signaling of 12 bits/frame (24 kbps) for channel status information

- OWC is a powerful technology to relieve growing demand for bandwidth
- Labs work has shown
 >100 Gbps
 - OWC can become a valuable addition to existing wireless technologies such as WiFi and Bluetooth in offloading heavy traffic

TU/e

Ongoing Works

17

ELI®T

- EU H2020 ELIOT "Enhance Lighting for Intenet of Things"
- NWO Perspectief Program (2021-2026)

• KPN SMART Program

Thank you!

