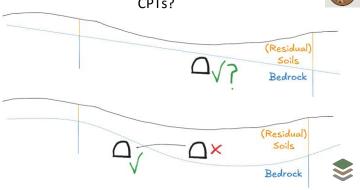
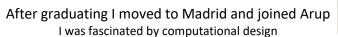

Unearthing the hidden potential in ground investigation data by converting to geospatial databases

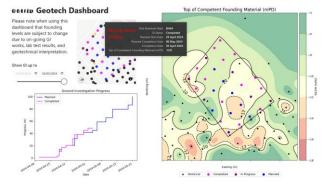




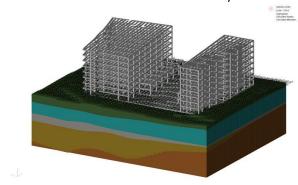
Computational design for geotechnical engineering

Ground Investigation

↓
Ground Modeling


↓
Geotechnical Analysis & Design

↓
Delivery


Computational design for geotechnical engineering Shallow foundation feasibility dashboard

Computational design for geotechnical engineering Automated raft foundation analysis

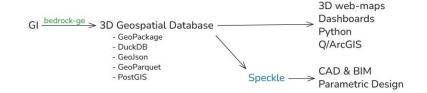
I worked for Arup on projects all over the world

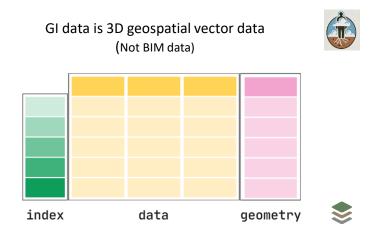
Ground Investigation (GI) data is different everywhere

Formats

- PDF
- CSVs
- Excel
- AGS 3
- AGS 4
- GEF
- Many more...

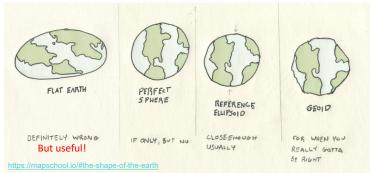
Committees


- AGS data management working group
- OGC geotech interoperability experiment
 OGC, bSI (IFC), AGS, DIGGS


How do we get our GI data where we need it? HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.) 5∞N: 14?! RIDICULOUS! WE NEED TO DEVELOP GI ONE UNIVERSAL STANDARD SITUATION: SITUATION: THAT COVERS EVERYONE'S THERE ARE THERE ARE USE CASES. YEAH! 14 COMPETING 15 COMPETING STANDARDS. STANDARDS. ign

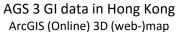
How do we get our GI data where we need it? bedrock-ge

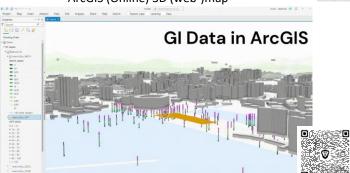
GI data is relational



GI Tables	Geospatial Geometry Type
Projects	
Locations	LINESTRING Z
In-Situ Observations & Measurements	
→ Raw CPT Data	None
 Interpreted CPT Soil Profiles 	LINESTRING Z
 Geological Descriptions 	LINESTRING Z
→ Vane Shear Test	POINT Z
→ Samples	POINT Z or LINESTRING Z
Laboratory Tests	
- Densities	
 Moisture Contents 	
 Atterberg Limits 	
 Particle Size Distributions 	
 Consolidation Tests 	
Triaxial Tests	
Direct Shear Tests	

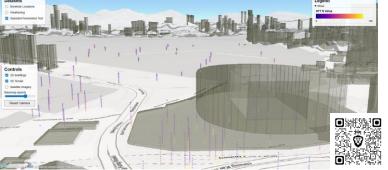
GIS software handles CRS transformations

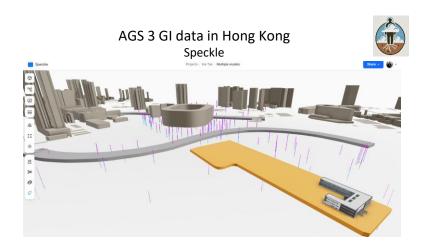

 $GI \rightarrow bedrock-ge \rightarrow 3D$ Geospatial DB How about PDFs?

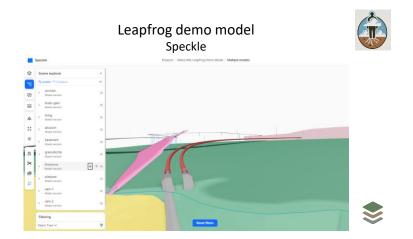


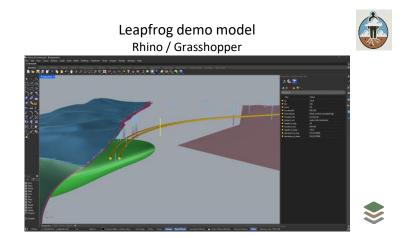
Αl

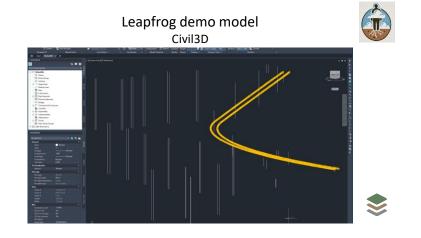
However, Al needs to put the data it extracts from the PDFs in a <u>useful data structure</u>.

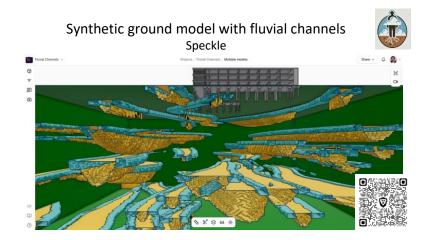


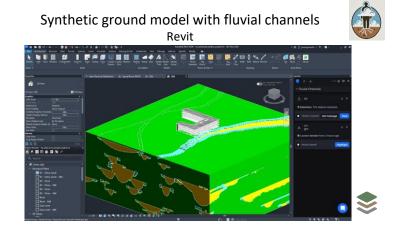


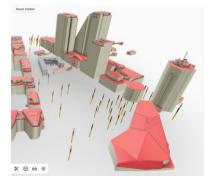



AGS 3 GI data in Hong Kong CesiumJS 3D web-map









Why haven't we structured GI data as 3D geospatial data before?

- 3D GIS is new
- GIS ↔ BIM is easier now

Bedrock, the open-source foundation for geotechnical engineering

