Grid-connected Converter with Voltage Support using only Local Measurements

Y. Zhang MSc ir. M.A.M. Hendrix dr. M.G.L. Roes dr. J.L. Duarte prof.dr. E.A. Lomonova MSc

- Background: problems and solutions
- Proposal: upgrading control strategy
- Performance investigations:
 - Objective #1 Harmonics compensation
 - Objective #2 Active power transfer regulation
- Comparison between simulation & experiments
- Summary & Conclusions

Background(1/4): Harmonic problems

- Local non-linear loads
- Distorted grid current
- Cable impedance
- ➤ Distorted local voltage

Background(2/4): Harmonic problems

- Local non-linear loads
- Distorted grid current
- Cable impedance

- Distorted local voltage
 - Sensitive devices disturbed;
 - Local loads efficiency decreased → cost;
 - Grid current quality impaired.

Background(3/4): Conventional solution

Background(4/4): Existing resources

Proposed solution

Upgrading control algorithm; no additional sensors

- Background: problems and solutions
- Proposal: upgrading control strategy
- Performance investigations:
 - Objective #1 Harmonics compensation
 - Objective #2 Active power transfer regulation
- Comparison between simulation & experiments
- Summary & Conclusions

Control strategy in the application scope

Upgrading control algorithm; no additional sensors

Control strategy framework (1/2)

- The local voltage measurement is used for
 - Grid synchronization (traditional usage)
 - Harmonics detection/suppression (added usage)
- No need for additional sensors

Control strategy framework (2/2)

- Active power transfer and harmonics compensation working at different frequencies
- No interferences between them

Harmonics compensation, @150Hz, 250Hz and etc

- Background: problems and solutions
- Proposal: upgrading control strategy
- Performance investigations:
 - Objective #1 Harmonics compensation
 - Objective #2 Active power transfer regulation
- Comparison between simulation & experiments
- Summary & Conclusions

Comparison between before & after (1/2)

• #1, Simulation

[2]

Comparison between before & after (2/2)

• #1, Experiments

[2]

Investigate of active power transfer (1/2)

• #2, Simulation - fundamental output current regulation.

[1]

• **(a)** $I_{o,1}^* = 0A$

• (a) $I_{o,1}^* = 2A$

*[1] not published
*[2] not published

Technische Universiteit

Investigate of active power transfer (2/2)

• #2, Experiments - fundamental output current regulation.

[1]

• **(a)** $I_{o,1}^* = 0A$

• (a) $I_{o,1}^* = 2A$

- Background: problems and solutions
- Proposal: upgrading control strategy
- Performance investigations:
 - Objective #1 Harmonics compensation
 - Objective #2 Active power transfer regulation
- Comparison between simulation & experiments
- Summary & Conclusions

[2]

Comparison between simu. & exp.

- Harmonics suppression in the local voltage
 - Before & after in simulation/experiments

[1]

Simulation

Experiments

*[1] not published *[2] not published

Comparison between simu. & exp.

 Regulating fundamental output current in order to control active power transfer

[1]

*[1] not published

- Background: problems and solutions
- Proposal: upgrading control strategy
- Performance investigations:
 - Objective #1 Harmonics compensation
 - Objective #2 Active power transfer regulation
- Comparison between simulation & experiments
- Summary & Conclusions

Summary

- Upgrade existing grid-connected converters for:
 - Active power transfer & Local voltage support

No additional hardware/wiring.

 i_{ld1}

Conclusion

- Control strategy proposed for the purposes of
 - Harmonics compensation (added feature)
 - Active power regulation
- Feasibility verified in simulation and experiments.

- Benefit:
 - Only control algorithm upgrading;
 - No need to measure the grid or load current.

Thanks!

Thank you for your attention!

Ya Zhang
Ya.zhang@tue.nl

Electromechanics and Power Electronics (EPE) Group

