Testing of DWDM + CWDM high speed systems

Christian Till Technical Sales Engineer, EXFO

Need more bandwidth ?

xWDM - Class of WDM Devices

Wavelength Division Multiplexing (WDM) :

Access

2 channels

1310nm, 1550nm

Coarse WDM (CWDM): MetroE, Mobile Backhaul

8 – 16 channels

Typical channel spacing 20nm

1271nm – 1611nm

Dense WDM (DWDM): Long haul, MetroE, RPHY

Up to 160 – 320 channels

Typical spacing: 0.4 nm

xWDM - Class of WDM Devices

DWDM = EDFA's, nearly unlimited reach

CWDM \neq EDFA's, upper 8 attenuation ~ 0.25dB/km, reach ~80 km (20dB) CWDM \neq EDFA's, lower 8 attenuation ~ 0.40 – 0.50dB/km, reach ~40 - 50 km (20dB)

CWDM – Metro Ethernet ring type

CWDM - More Than 8 Customers?

Could turn up spare fibers if available

Could turn up lower 8 wavelengths

Higher attenuation - may not be able to reach customers

Non-uniform attenuation - loss budgeting more complex

Could overlay additional DWDM channels - "DWDM over CWDM"

DWDM channels more costly than CWDM channels

Big bandwidth potential...a.k.a. support many new customers

DWDM over CWDM

Over 1531nm and/or 1551nm

Sacrifice 1 CWDM channel (1551nm) to insert 16 DWDM channels Could also sacrifice 2nd CWDM channel (1531nm to add 8 – 16 more)

DWDM over CWDM

What to look for during the construction?

Fibers may impact your signals!

Dirty connectors

Macrobends

Fiber cuts / high loss

Clean connectors

Clean fiber management

CONNECTOR INSPECTION!

WHY AUTO CENTERING?

1st

Step

Testing Challenges

Muxes and Demuxes Are Wavelength Specific

Historical OTDRs and Light Sources Are Too Wide to "Fit" Through Filter Ports

Typical OTDR Center λ "1550nm" ± 20nm Typical OTDR $\Delta\lambda$ = 10nm Typical Light Source Center λ 1310nm or 1550nm Typical Light Sources $\Delta\lambda$ = 5nm

Traditional tools won't pass through filters

CWDM Test Tools FTB-740C CWDM OTDRs Make Testing Simple

xWDM Troubleshooting

- Use the C/DWDM OTDR to validate <u>continuity</u> during construction through the MUX/DEMUX and get End-to-End budget loss
- Use the C/DWDM OTDR to troubleshoot from the head-end
- In-service testing using the customer's wvl port (ITU DWDM or CWDM)
- Single-ended CWDM/DWDM fiber characterization in one box

CHANGING THE WAY YOU TEST FIBERS

Get multiple OTDR fast acquisitions @every pulses & @every wavelength

Analyze OTDR traces

Combine results

Display optical link view

CWDM Test Tools

How Many DWDM Overlay Channels Can I Add?

		Ch. #	λ (nm)	Power (dBm)	OSNR (dB)	Noise (dBm)	BW 3.00 dB (nm)	BW 20.00 dB (nm)	Name
А	ctive	41	1544.525			(IEC)-24.29			041
R	ef.		1544.525	-	-	(IEC)-23.09	-	-	
Δ			0.000	-	-	-1.20 dB	-	-	
A	ctive	42	1544.925	-	-	(IEC)-24.24	-	-	042
R	ef.		1544.925	-	-	(IEC)-23.03	-	-	
Δ			0.000	-	-	-1.21 dB	-	-	
A	ctive	43	1545.320	-	-	(IEC)-24.18	-	-	043

CWDM Test Tools

How Many DWDM Overlay Channels Can I Add?

PM vs. CWDM analyser vs. OSA

mesure the **TOTAL POWER**

the POWER per channel

Including OSNR & λ

What is OSNR (Optical Signal to Noise Ratio)?

WDM Investigator

Graph	Channel R	esults Global	Results WDM Investigator						or								OSA WDM				
A Channe	el Characteris																				
PolMux Sign	nal	0	0	ଡ୦	0	0	Ο	0	Ś	0	Ο	0	0	0	O			Start			
Carved Nois	e		୬	0	ଏ	0	0	Ś	0		0	0	Ś	୬	Ś	ଏ			Start		
🔺 Impairm	ents																				
PMD Pulse	Spreading	0	0	Â		0		0				0		Â	Δ		h r				
Interchanne	l Crosstalk		x			0		0		0		0	0	0			J	۷	l	~	
Nonlinear D	epolarization	õ	ō	Ø	Ø	Ā	Ø	Õ		Õ	õ	Õ	Õ	õ	Ā	Ope	n	Save	F	av.	
Carrier Leak	age		Ă	x	Ă	x	0	_	Ă		ŏ	ŏ	-	Ă	ŏ		Main	Me	nu		
	-	<u> </u>			$\overline{}$	Ť				ŏ	ŏ		_	č	ň		F	ile			
		22	475	830	8	120	545	345	8	925	22	720	220	375	6					-	
		1529	1533	1534 1536	1541	1542	1544	1545	1546	1546	1547	1551	1552	1557	1560		Di	scove	er		
Acquisitior	n Results											પ	J	7	رخ ا	F	refe	erenc	es		
		-) L		Ar	aly	sis Se	tup		
Ch. #	λ (nm)	Power (dBm) (OSN	R (dB)	N	Noise (dBm))	BW	' 3.	00 (dΒ							
5	1541.361	(i)-16.3	35 29.10			3	(InB)-45.48								1			M	ode		
6	1542.150	(i)-16.6	9		29.0	0	(InB)-45.			45.0	69	9 Q				\subseteq					
7	7 1544.545 (i)-18.0			08 21.08			(InB nf)-39.16														
8	8 1545.345 (i)-17.2			27 28.98			(InB)-46.25														
9 1546.131 (i)-17.4			+2 28.87 (INB)-40.28 U							ž		a (
GR 40G 1527-1568 WDM Investigator											IJ (୭	0	୬							

Meet C.N. Rood and EXFO at Booth 9

- Optical Test and Measurement, Monitoring
- Fiber Cleaning and Inspection
- Fusion Splicers
- Time and Frequency Synchronization

