

Today ...

- What is H2, how can it be made, and is it sustainable?
- What is it used for now (in NW Europe), and how is this changing?
- What is Shell's vision for net zero and hydrogen?
- What are we doing here and now to make this happen and why?

Hydrogen The most abundant element in the universe

- About 75% of the universe mass is hydrogen
- Hydrogen combines with pretty much anything, so it's almost always found chemically bound
- Hydrogen really likes to remain gaseous... (liquid at -260 degC)
- Hydrogen has a very broad ignition range (and tends to explode rather than slowly burn)

Grey hydrogen – reforming of natural gas

Well-established and widely used in industry, efficient but CO2-heavy

Copyright by Shell Plc

RESTRICTED

Blue hydrogen – also reforming of natural gas CO2 is captured and either utilised or stored

Options

- Steam integration
- Alternative oxygen sources
- Alternative hydrocarbon sources
 - e.g. refinery offgases
- Captured CO2:
 - Utilisation
 - Sequestration
- ~0.5-1.2kgresidual emissions(Scope 2/3)

Copyright by Shell Plc RESTRICTED

Green hydrogen – Water electrolysis Zero direct emissions – but power source is crucial

Copyright by Shell Plc RESTRICTED

Alternative production technologies Other options exist at (much) earlier technology readiness level

- Photocatalytic H2: direct production from sunlight
 - 15% conversion achieved in 2019 (KU Leuven)
 - Scale-up is pending

Source: https://nieuws.kuleuven.be/en/content/2019/belgian-scientists-crack-the-code-for-affordable-eco-friendly-hydrogen-gas

- Turquoise H2: methane pyrolysis
 - Solid carbon as by-product
 - Other hydrocarbons also possible sources
- Gasification of organics e.g. from waste
- Bio-H2 e.g. from anaerobic digestion
- Others ...?

Source: BASF, https://www.efzn.de/fileadmin/documents/Niedersaechsische_ Energietage/Vortr%C3%A4ge/2019/NET2019_FF1_04_Bode_Rev1.pdf

Scene-setting: Hydrogen in the Netherlands today Key industrial resource, mainly 'grey' H2 from natural gas

- Annual production in NL over 10 billion m³ (~800kt/a)
 - Second largest in EU (total ~90 bln m³)
 - Captive / merchant / byproduct manufacture
- Primary uses: refinery feedstock and ammonia for fertiliser
- Pipeline networks (Air Liquide)
 - South NL, Belgium, northern France
 - Rotterdam / Maasvlakte area
- Use in mobility still early stage

Source: internal report

Copyright by Shell Plc

NL has potential for CO2 reduction using H2 in all sectors How to enable rapid market growth and system integration?

- Growing (industrial) hydrogen demand is key to commercial scale-up
 - Integrated and collaborative projects have best chance of success
 - Industrial clusters leading the way
- (Offshore) renewables expansion offers potential and also constraints for green H2
- Energy imports and (European) connectivity crucial
 - Policy frameworks also highly influential
- Pace of change stepping up in neighbouring countries (BE/FR/DE)

Shell's climate target

Shell aims to become a net-zero emissions energy business by 2050.

We believe Shell's total carbon emissions from energy sold peaked in 2018 at around 1.7 Gtpa

Copyright by Shell Plc

10

The role of Hydrogen in reaching Net Zero

Copyright by Shell Plc

Hydrogen in the future energy system

Decarbonise hard-to-abate end-uses

Decarbonising transportation leveraging higher energy density uses

Enabling large-scale renewables penetration and power generation

Enable deep renewables penetration,

distribution & system resilience

Decarbonising industry energy use replacing coal and other fossil fuels

Enabling large-scale renewables penetration and power generation

Decarbonising building heat and power leveraging existing gas infrastructure

Act as a buffer or storage to increase system resilience

Decarbonising grey H₂ use in fertiliser, refineries and chemical industries

Electrolysers as real-time sinks for an oversupplied renewable system

Copyright by Shell Plc

Focus on Hydrogen for Industry

Decarbonising industry starts at hubs, expanding to industry clusters as the infrastructure develops

		Proof points	
Increasing uncertainty & risk	Step 1 – Own Use Serve own-use as anchor demand in hubs – enables to build supply positions and gain experience and credibility	RefHyne - Rhineland Rotterdam Electrolyser	
	Step 2 – Serving the hubs Serve local third party customers in hubs - create market and solutions, expand supply position	GZI - Emmen Rotterdam Electrolyser Hamburg	
	Step 3 – Starting the clusters Serve inter-regional and international industrial demand through an expanding hydrogen backbone network	NortH ₂ Ingoland	•1
	Step 4 – Fully developed Traded hydrogen commodity market – facilitated by a wide-spread hydrogen pipeline network, including import	Rotterdam import Hamburg Import	•1

Copyright by Shell Plc.

Projects

R&D: Developing and integrating technologies of the hydrogen value chain

Production

Assure hydrogen's quality and purity

Storage

- Computational modelling to identify innovation
- Storage tank designs for H2 long distance transportation

Transport

Liquid H2 long range research

Building hydrogen networks

■ Feasibility studies to integrate electrolyser in energy system (local grid or industrial sites)

Distribution

Safe and easy-to-use dispensers

Shell Hydrogen power dispenser Success story for collaborative development

- Both 700bar and 350bar refuelling
- Universal payment solution
- Touchscreen display
- Lightweight nozzle
- Designed for installation on existing forecourt
- Available globally under licence

Shell Hydrogen **Power Dispenser**

- Emmen Hydrogen Refuelling Station: operational since 6/22
 - First <u>public</u> heavy-duty HRS for Shell in NL
- Hydrogen pipeline to industry
 - First part of planned nationwide hydrogen backbone in NL

19

Copyright by Shell Plc CONFIDENTIAL

RefHyne I Building a 10MW PEM electrolyser

- Shell has opened a 10-megawatt PEM (polymer electrolyte membrane) electrolyser, the largest of its kind, to produce hydrogen at the Rhineland refinery in Germany.
- Now investigating the possibility of scaling up to 100MW (working with ITM Power)
- This project is supported by the European Union.

Hydrogen for transport in Germany - up and running

- Foundation of Joint Venture company in Jan 2015
- Network comprised ~100 hydrogen refuelling stations by the end of 2021
- Example of industry partnership sharing risks across the value chain, supported by Government

Founding Partners

Key

- Shell Hydrogen filling stations
- Other Hydrogen filling stations

Shell Hydrogen fuelling stations in the Netherlands

■ **Groningen** Bus refueller

Ruygenhoek

Emmen

Westpoort Amsterdam

23

Shell Hydrogen has come a long way ...

Heavy Duty Transport - **H₂Accelerate** - 2020

- Collaboration of truck manufacturers and energy companies working to advance funding and policy landscape for hydrogen trucking
- Phase 1: Proof of concept: > 20 stations, 100ss of trucks
- Phase 2: European roll out: wide network coverage, 1,000's of trucks

Founding Partners

Hydrogen as an energy vector

Proposed Gasunie H2 Backbone: distribution network linking key industrial clusters

