

SATELLITE COMMUNICATION WITH OPTICAL WAVES

- POTENTIAL AND CHALLENGES -

NIEK DOELMAN

- TNO SPACE & LEIDEN UNIVERSITY

> Founded in 1932

BUILDI

innovation for life

SV'

HEALTHY LIVING

TRANSPORT

Ph.

Q

STRATEOR AND STRATEOR

- Independent not-for-profit organization, bridging gap between academia and industry
- > Annual Turnover ~500Meur: ~30% from Dutch government rest from industry
- Around 3.000 employees (mainly MSc, PhD)

INDEX SATELLITE COMMUNICATION WITH OPTICAL WAVES

01. POTENTIAL OF USING OPTICAL WAVES

02. CHALLENGES

03. PRACTICAL EXAMPLES

FROM RADIO-FREQUENCY WAVES TO OPTICAL WAVES POTENTIAL

- IMPACT
- > Shannon's capacity: Capacity = Bandwidth x $\log_2\left(1 + \frac{\text{Signal}}{\text{Noise}}\right)$

) Transmission (Friis): Transmission coefficient ~ $\left(\frac{D_{Tx} D_{Rx}}{\lambda L}\right)^2$

OPTICAL WIRELESS COMMUNICATION Main Advantages

- High Speed: data rates (> 100 Gbps) with small Transmitter (Tx)/ Receiver (Rx)
- Secure: Immunity to interception, jamming, interferers and piracy
- > Secure: enables the use of free space Quantum Key Distribution
- > SWaPC: lower volume, lower weight (space), lower cost /bit
- > Bandwidth: abundant, unregulated bandwidth
- Network: terrestrial fibre optics already available /enabler
- ... more

Credits: NASA

OPTICAL WIRELESS COMMUNICATION Challenges

...

- Requires clear Line-of-Sight ...
- Requires high precision pointing ...
- Atmospheric conditions

• Eye safety limits

• ...

- clouds for instance demand a grid of ground stations
- much smaller beam spot
- absorption, scattering, ...

atmospheric turbulence leads to intensity fluctuations, beam wander, beam spread

- ~50 W/m^2 (1064 nm) and 1000W/m^2 (1550 nm)
- Some technology still @ low maturity ... e.g. high-power multiplexing, amplifiers, ..
- Standards missing / in progress
- Additional RF/optics conversion needed
- On-board (satellite) high-speed processing needed

Poulenard 2015

FIRST (OPERATIONAL) OPTICAL SATELLITE LINK

> European Data Relay Satellite (EDRS) System

- Secure data transfer up to 1.8 Gbps
- Data relay from Low Earth Orbits (700km) to GEO-stationary
- Relay up to 40 TB of data
- Data from Observation satellites, aircraft, unmanned aerial vehicles and other mobile

Credits: Airbus 2021

EARLY OPTICAL SATELLITE LINKS Lunar Link

European Deep-Space Optical Communication Program Lunar Laser Communication Demonstration (LLCD)

Downlink from NASA's LADEE S/C to ESA's Optical Ground Station (OGS):

- 80 Mbps over 400000 km
- 0.5 W transmit power
- 10 cm transmit aperture
- 1 meter receive aperture
- HPE deep-space modulation standard

Credits: ESA

esa

NASA demonstrated 622 Mbps

OPTICAL SATELLITE COMMUNICATION

Details of a Ground to LEO Satellite Link

- Specifics of optical wireless over very long distance
- PHY-layer perspective

LEO SATELLITE CONSTELLATIONS HIGH THROUGHPUT AND LOW LATENCY

- > Various LEO satellite configs under construction ..
- Objective: high-throughput broadband services with low latency
-) ... latency advantage over fiber network

							LEO Satellite
SATELL DOWNLINK	ITE - GROUN BUDGET	ID LINK			Zenith angle		Satellite orbit
	Tx Antenna Gain				station		
Geometrical	Rx Receiver Gain					Earth	
	Free-space Loss					Ref: Tal	kemoto 2015 ICSOS
	TOTAL Geometric) Free-space Loss					
			C				
Optical	Optical aberrations in Tx	Range effect: $L_R = ($	$\left(\frac{\lambda}{4\pi L}\right)^{2}$	252 dB (Zen	ith)260 dB (20)deg elevatio	n)
inaccuracies	Optical aberrations in Rx						
	Pointing Boresight error	> LEO satellite at 500	km orbit, 15	50 nm wave			
	Pointing Precision) Antenna Gains					
	TOTAL Inaccuracies	$(\pi D)^2$					
		Gain: $G \approx \left(\frac{1}{\lambda}\right)$		groun	d: +126 dB	space: +	110 dB
Atmospheric	Absorption/ scattering	Limited apertures:	ground:	0.5 – 1 m (verv	large: 4m).		
•	Wavefront error		8				
	Irradiance fluctuations		space:	0.1 - 0.2 m (ver	y large: 1m)		
	TOTAL Atmospheric						
Total							

SATELLITE - GROUND LINK DOWNLINK BUDGET

LINK to LEO Satellite

Geometrical	Tx Antenna Gain			
	Rx Receiver Gain			
	Free-space Loss			
	TOTAL Geometric			
Optical	Optical aberrations in Tx			
inaccuracies	Optical aberrations in Rx			
maccuracics	Pointing Boresight error			
	Pointing Precision			
	TOTAL Inaccuracies			
Atmospheric	Absorption/ scattering			
	Wavefront error			
	Irradiance fluctuations			
	TOTAL Atmospheric			
Total				

> Optical wavefront errors

- Distorted beams, due to optical component inaccuracies
- Wavefront error of 200nm, leads to ~3 dB loss

Pointing issues

- Boresight error: ..slope of the Gaussian...
- and jitter: ...spot 'dancing' in receiver plane

Absorption and scattering effects / molecular and aerosol

- > Extinction factor
- Scales with 'number density of air constituents'
- Integrated effect (over path)
- > Typical value: 1-2 dB

Ref: Andrews 1995

				Ref: Kaushal 2017				
$\gamma \left(\lambda \right) =$	$\underline{\alpha_m(\lambda)}$	+	$\underbrace{\alpha_a(\lambda)}$	+	$\underline{\beta_m(\lambda)}$	+	$\underline{\beta_a(\lambda)}$	
	Molecular		Aerosol		Molecular		Aerosol	1
	absorb. coeff.		absorb. coeff.		scatt. coeff.		scatt. coeff.	

IMPACT OF ATMOSPHERIC TURBULENCE

BEAM DISTORTION

- Temperature/ pressure variations lead to fluctuations (spatial & temporal) in index-of-refraction
- Cn2 profile strongest at ground level
- Power spectrum fast fall-off for higher spatial frequencies
- Giving pathlength fluctuations \rightarrow wavefield phase fluctuations
-) and amplitude fluctuations (after some propagation)

EFFECTS ON OPTICAL BEAM

- 1. Beam spread; wider spot @ receiver
 - On top of diffractive effect
- 2. On-axis scintillation (amplitude fluctuations)
- 3. Beam wander; spot 'dancing' in receiver plane
 - also yielding intensity fluctuations

Altitude h (meters)

Fig. 2. $C_n^2(h)$ profile associated with the H–V day model as a function of altitude h. The values of A shown represent C_n^2 near ground level, whereas ν denotes high-altitude wind speed.

ATMOSPHERIC TURBULENCE

Model of intensity fluctuations

- 1. Average Loss
- Instantaneous intensity fluctuations (fading channel)

IMPORTANT PARAMETERS

- 1. Turbulence strength
- 2. Elevation angle
- 3. Slant range
- 4. Uplink vs. downlink
- 5. Beam size/ type

- Cn2 Model: Hufnagel-Valley with variable pseudo-wind at 11 km
- Values: [21 72]
- Uplink to satellite
- Other: Tx waist (0.35m), Zenith angle (1 rad), wavelength (1550 nm), AO beam wander correction under PAA angle

DISTURBED WAVEFRONTS AND FIBER COUPLING

(a)

50

(b)

(c)

-1 0

1

0.5

0.2

50

100

150

200

250

- Wave intensity profile should match mode of fiber 1.
- Wave distortion may seriously reduce coupling efficiency 2.
- Nominal case: coupling efficiency of 0.81 З.
 - Spatial Match of Gaussian wave profile with fiber mode

WAVEFRONT PHASE CORRECTION NECESSARY !

ADAPTIVE OPTICS

WORKING PRINCIPLES

PRINCIPLES

- 1. Measure phase distortion at receiver
- 2. Compute (instantaneous) wavefront correction
- 3. Apply phase correction by 2D deformable mirror

PROPERTIES

- 1. Real-time feedback loop
- 2. 2D spatial correction for a 3D effect
- 3. Relatively complex solution, with high-end components

(indispensable in large astronomical telescopes)

Movie: <u>https://www.youtube.com/watch?v=3BpT_tXYy_l</u> from 1m20

SATELLITE TO GROUND LINK DOWNLINK BUDGET

LINK Down LEO Satellite (500 km) – 1550 nm - Zenith – Rx 0.4m

Geometrical	Tx Antenna Gain	109.7	Tx aperture = 0.15m / Beam divergence 9.2 µrad (half angle)
	Rx Receiver Gain	118.2	Rx aperture = 0.4 m
	Free-space Loss	-252.2	Slant range = 500 km
	TOTAL Geometric	-24.3	
Optical	Optical aberrations in Tx	-0.7	Wavefront Error = 100 nm (RMS)
inaccuracies	Optical aberrations in Rx	-1.2	Transmission Rx optics system = 0.75
Inaccuracies	Pointing Boresight error	-0.6	Offset = 2.5 µrad
	Pointing Precision	-1.1	Jitter is 2.5 µrad (RMS)
	TOTAL Inaccuracies	-3.7	
Atmospheric	Absorption/ scattering	-0.9	Visibility = 20 km, Scale parameter = 4km
, anoophono	Wavefront error	-1.8	Mismatch for fiber coupling & nominal factor 0.81 / with Adaptive Optics system at 75% rejection
	Irradiance fluctuations	-0.5	Margin for outage probability of 1%
	TOTAL Atmospheric	-3.2	
Total		-31.2 dB	

SATELLITE TO GROUND LINK DOWNLINK BUDGET

LINK Down LEO Satellite (500 km) – 1550 nm - extreme angles – Rx 0.4m

		Zenith	20 deg		Ac
			elevation		
Geometrical	Tx Antenna Gain	109.7	109.7	Tx aperture = 0.15m / Beam divergence 9.2 µrad (half angle)	
	Rx Receiver Gain	118.2	118.2	Rx aperture = 0.4 m	
	Free-space Loss	-252.2 -259.7		Slant range = 500 km vs. 1192 km (Orbit at 500km)	
	TOTAL Geometric	-24.3	-31.9	7.6 dB higher loss	
Optical	Optical aberrations in Tx	-0.7	-0.7	Wavefront Error = 100 nm (RMS)	
inaccuracies	Optical aberrations in Rx	-1.2	-1.2	Transmission Rx optics system = 0.75	
	Pointing Boresight error	-0.6	-0.6	Offset = 2.5 µrad	
	Pointing Precision	-1.1	-1.1 Jitter is 2.5 µrad (RMS)		
	TOTAL Inaccuracies	-3.7	-3.7	unchanged	
Atmospheric	Absorption/ scattering	-0.9	-2.6	Visibility = 20 km, Scale parameter = 4km	
	Wavefront error	-1.8	-3.6	Longer atmospheric path/ Adaptive Optics system at 75%	
	Irradiance fluctuations	-0.5	-2.4	Margin for outage probability of 1%	
	TOTAL Atmospheric	-3.2	-8.6	5.4 dB higher loss	
Total		-31.2 dB	-44.2 dB	13 dB higher loss	

Main effects:

- Longer path
- More atmospheric distortion

SATELLITE TO GROUND LINK DOWNLINK BUDGET – INCREASED RX APERTURE

	Rx 0.4m		Rx 0.8 m		
	Zenith	20 deg elevation	Zenith	20 deg elevation	
Tx Antenna Gain	109.7	109.7	109.7	109.7	Tx aperture = 0.15m / Beam divergence 9.2 µrad (half angle)
Rx Receiver Gain	118.2	118.2	124.2	124.2	Rx aperture = 0.8 m
Free-space Loss	-252.2	-259.7	-252.2	-259.7	Slant range = 500 km vs. 1192 km (Orbit at 500km)
TOTAL Geometric	-24.3	-31.9	-18.3	-25.9	6 dB gain with twice the diameter
Optical aberrations in Tx	-0.7	-0.7	-0.7	-0.7	Wavefront Error = 100 nm (RMS)
Optical aberrations in Rx	-1.2	-1.2	-1.2	-1.2	Transmission Rx optics system = 0.75
Pointing Boresight error	-0.6	-0.6	-0.6	-0.6	Offset = 2.5 µrad
Pointing Precision	-1.1	-1.1	-1.1	-1.1	Jitter is 2.5 µrad (RMS)
TOTAL Inaccuracies	-3.7	-3.7	-3.7	-3.7	unchanged
Absorption/ scattering	-0.9	-2.6	-0.9	-2.6	Visibility = 20 km, Scale parameter = 4km
Wavefront error	-1.8	-3.6	-3.9	-9.4	Higher error variance (D^(5/3)) / (Adaptive Optics at 75%)
Irradiance fluctuations	-0.5	-2.4	-0.2	-1.1	Effect of Aperture Averaging
TOTAL Atmospheric	-3.2	-8.6	-5.0	-13.1	up to 4.5 dB higher loss
TOTAL	-31.2 dB	-44.2 dB	-27.0 dB	-42.7 dB	Limited gain for low elevation angles

Main effects:

- Receiver gain
- More atmospheric distortion at low elevations

TNO innovation 19

TURBULENCE INDUCED DISTORTIONS

ROLE OF RECEIVER APERTURE

1. Small Rx aperture

Disturbed spot (atmospheric turbulence

TURBULENCE INDUCED DISTORTIONS

ROLE OF RECEIVER APERTURE

Received power

Disturbed spot (atmospheric turbulence

	D TO SATEL DGET – regular size	ed Tx (O	LINK 9.8m) and Rx (0.15m)	Zenith angle
LINK to LEO S	atellite (500 km) – 1	1550 nm	n - Zenith angle	Satellite orbi
Geometrical	Tx Antenna Gain	124.2	Tx aperture = 0.8 m	Optical ground
Geomotroal	Rx Receiver Gain	109.7	Rx aperture = 0.15 m	Earth
	Free-space Loss	-252.2	Slant range = 500 km	
	TOTAL Geometric	-18.3	unchanged	
Optical	Optical aberrations in Tx	-0.7	Wavefront Error = 100 nm (RMS)	
inaccuracies	Optical aberrations in Rx	-1.2	Transmission Rx optics system = 0.75	
	Pointing Boresight error	-17.8	Offset = 2.5 µrad- Tx gain dependent	
	Pointing Precision	-9.6	Jitter is 2.5 µrad (RMS) – Tx gain dependent	
	TOTAL Inaccuracies	-29.4	Pointing sensitivity	Main effects of reversing Tx Rx size
				- Same geometric loss
Atmospheric	Absorption/ scattering	-0.9	Visibility = 20 km, Scale parameter = 4km	- Very sensitive to pointing errors
•	Wavefront error	-	Irrelevant, due to high coherence radius ($>> 1$ m)	
	Additional Beam Spread	-15.6	Turbulence-induced widening of the beam	- High impact of turbulence
	Irradiance fluctuations	-10.8	100% Pre-corrected Beam wander	
	TOTAL Atmospheric	-27.2		
			~ 19 dP additional loss due to Atmospheria distortion and	
Total		75.0 dB	Pointing errors	

LEO Satellite

<

NAME AND ADDRESS OF ADDRESS OF

the second second

GROUN UPLINK BUD	D TO SATEL DGET – reduced Tx	(0.2m)	LINK and Rx (0.15m)	Zenith angle
LINK to LEO S	atellite (500 km) – 1	.550 nm	- Zenith angle	Satellite orbit
Geometrical	Tx Antenna Gain	112.2	Tx aperture = 0.2 m	Optical ground
Goomotrioar	Rx Receiver Gain	109.7	Rx aperture = 0.15 m	Earth
	Free-space Loss	-252.2	Slant range = 500 km	
	TOTAL Geometric	-30.3	12 dB higher loss	
Optical	Optical aberrations in Tx	-0.7	Wavefront Error = 100 nm (RMS)	
inaccuracies	Optical aberrations in Rx	-1.2	Transmission Rx optics system = 0.75	
maccaracies	Pointing Boresight error	-1.1	Offset = 2.5 µrad	
	Pointing Precision	-1.8	Jitter is 2.5 µrad (RMS)	
	TOTAL Inaccuracies	-4.9		Main effects smaller Tx
Atmospheric	Absorption/ scattering	-0.9	Visibility = 20 km, Scale parameter = 4km	- Lower gain
	Wavefront error	-	Irrelevant, due to high coherence radius (> 1 m)	- Less sensitive to pointing errors
	Additional Beam Spread	-5.5	Turbulence-induced widening of the beam	- Smaller impact of turbulence
	Irradiance fluctuations	-0.8	100% Pre-corrected Beam wander	
	TOTAL Atmospheric	-7.2		
Total		42.4 dB	~33 dB better with a 4 x smaller Tx	

LEO Satellite

REDUCING THE EFFECT OF TURBULENCE

INTENSITY FLUCTUATIONS / FADING

POTENTIAL APPROACHES

- 1. Aperture Averaging
 - Increase of (ground-) Rx aperture reduces intensity fluctuations, b
- 2. Diversity / spatial and or temporal
 - For instance: multiple Tx beams to average out fading effects
- 3. Adaptive Optics
 - Works for beam spreading, fiber coupling, limited (still) for intensit

4. Interleaving and Error Correction

- Can be very eff
- 5. Network orches
 - Requires netwo
- Improve the curve ...
- Deal with the curve ...
- Adaptive Optics, Spatial Diversity
- Forward error correction, Interleaving, Adaptive transmission,
- Find a better curve (link) ... Network orchestration

NATIONAL DEVELOPMENTS

Groeifonds

The proposed solution: towards a coherent, leading high tech equipment ecosystem

> NXTGEN HighTech proposal

> Funded for 450 Meuro (April 2022)

	1. Application in	Leading ap	plication domain			
2. Advancing key and system technologie:	Laser Satcom	Energy- conversion and storage	Biomedical production technology	Semicon Equipment for Hetero- geneous Integration	Flexible Micro Factory for Composites	Handsfree Agrifood
Optomechatronics	—					
Robotics / CPS						
Thin film / Plasma		_				
Semicon devices						
Bionano			_ __			
System engineering						
Smart Industry						
3. Strengthening the ecosystem	Vision & ro	admaps • Facilit	ies • Connectio	ns • Capital • S	ikills • Internatio	onalization

Starting right away with over 340 companies and knowledge institutions

The parties participating in NXTGEN HIGHTECH consist of 189 SMEs (including 75 young start-ups and scale-ups), 130 larger companies and 23 knowledge institutions. Roughly 1500 researchers and innovators are contributing. With a letter of intent these organisations have shown their commitment

NL National research program – Optical Wireless Superhighways

- Funded by NWO (Dutch Research Council)
- > Wireless links: from indoor links to satellite links
- > 5 universities, 15 PhD students
- > Period: 2022-2026
- Active participation by industry (~20 parties)

Research high-lights

- Beam steering
- Device localization
- > Diversity to reduce fading
- > Software defined networks
- > Multi-beam terminal
- > Key authentication
- > Low noise detection
- > Adaptive beam correction

Portfolio Space

TNO innovation for life

FEEDER LINK GND TO GEO SATELLITE

<u>Terabit Optical Communication Active Terminal = TOmCAT</u>

> Key aspects:

- Adaptive Optics (AO) for pre-correction of atmospheric disturbances
- > Uplink, 13 channels x 100 Gbit/s, C-band
- Downlink, 7 channels x 100 Gbit/s, L-band
- > 50 Watt per channel uplink
- Bulk optics multiplexing

> Telescope:

Rx aperture:

- 600 mm
- Tx sub-aperture: 200 mm (2x)
- > Total transmitted power: 650 Watt

innovation for life

AIRBORNE LCT DEMONSTRATOR

- Air based Laser Communication Terminal = Air-LCT
- Compatible with European Data Relay System (EDRS)
- Roadmap for full integration into aircraft
- Current status:
 - > Demonstrator for optical communication through aircraft window
- > Pointing Challenge !
- TNO Dynamical Optical Performance Evaluation = DOPE analysis
 - Design based on end-to-end modelling, including:
 - > Optical modelling,
 - > FEM modelling,
 - > Dynamics
 - > Control modelling,
 - > Error sources

ENABLING TECHNOLOGY – FSM

- <u>Fine/Fast Steering Mirror = FSM</u>
- > TNO inhouse designed
 - > custom developed reluctance actuators, redundant coil windings
 - hysteresis free flexural bearing
 - > mirror angle control via eddy current sensors
 - > dedicated thermal design enabling high optical power relay
- > Applications:
 - CubeCAT terminal
 - LEOCAT terminal
 - Multi-purpose TNO breadboards for demonstration purposes
- > Space qualified:
 - Vibration tested
 - Thermal vacuum tested (mechanical performance and outgassing)
- Status:
 - Commercially available product through FSO Instruments

Dutch Industrial partner:

o innovation

Tip/tilt range	±2°, i.e. ±34,9 mrad (optical)
Bandwidth (-3 dB)	> 1 kHz
Jitter	< 1 µrad
Optical coating	Enhanced gold, >98% refl. @1550 nm
Max. optical power	~10 W
Mirror diameter	Ø20 mm (flatness <12 nm rms) Ø30 mm possible
Volume	Ø24 mm x 30 mm

LONG RANGE KEY DISTRIBUTION SECURE COMMUNICATION WITH QKD

- Space/satellite based QKD
- Overcome distance limitation of fibers

Chinese quantum project QUESS showed it worked!

Micius satellite

Bedington 2017

Courtesy Bob Dirks

QUANTUM KEY DISTRIBUTION

https://www.tno.nl/en/focus-areas/industry/roadmaps/spacescientific-instrumentation/satellite-communication/enablingquantum-secure-communication-with-satcom-technology/ o innovation for life

THANK YOU

