G De

1 lom \mathbf{n}

Building deformation monitoring

Post-tunnelling damage assessment •

Building damage prediction

Current data availability

Many points on few buildings **OR** Few points on many buildings

Building deformation monitoring

Post-tunnelling damage assessment

Building damage prediction

Satellite Radar (InSAR)

Reflected signal at t₀

Reflected signal at t₁

8

High accuracy High spatial density Large scale coverage

Short revisit time

New automated methodology integrating InSAR-based building deformations and assessment procedures to evaluate settlement-induced damage to buildings adjacent to tunnel excavations on city-scale.

Crossrail tunnels, London

Giardina, G, Milillo, P, DeJong, MJ, Perissin, D and Milillo, G 2019, Evaluation of InSAR monitoring data for post-tunnelling settlement damage assessment, *Structural Control and Health Monitoring*

0.1600°O

nm

0 C-5 0 -15 -15

5

-20

Ground settlement

Giardina, G, Milillo, P, DeJong, MJ, Perissin, D and Milillo, G 2019, Evaluation of InSAR monitoring data for post-tunnelling settlement damage assessment, Structural Control and Health Monitoring

Building settlement

Macchiarulo, V, Milillo, P, DeJong M, Gonzalez Marti, J, Sanchez, J and Giardina, G 2021, Integrated InSAR monitoring and structural assessment of tunnelling-induced building deformations, Structural Control and Health Monitoring

1. Tunnelling-induced settlement profile in the absence of surface structures:

$$S(x) = \sqrt{\frac{\pi}{2}} \frac{V_L D^2}{4i} e^{-\frac{\pi}{4}}$$

2. Maximum bending strain $\varepsilon_{b,\max}$ and diagonal strain $\varepsilon_{d,\max}$:

Macchiarulo, V, Milillo, P, DeJong M, Gonzalez Marti, J, Sanchez, J and Giardina, G 2021, Integrated InSAR monitoring and structural assessment of tunnelling-induced building deformations, Structural Control and Health Monitoring

3. Actual (InSAR) building displacements

5. Maximum bending and diagonal strains from actual deflection ratio Δ/L

Macchiarulo, V, Milillo, P, DeJong M, Gonzalez Marti, J, Sanchez, J and Giardina, G 2021, Integrated InSAR monitoring and structural assessment of tunnelling-induced building deformations, Structural Control and Health Monitoring

Macchiarulo, V, Milillo, P, DeJong M, Gonzalez Marti, J, Sanchez, J and Giardina, G 2021, Integrated InSAR monitoring and structural assessment of tunnelling-induced building deformations, Structural Control and Health Monitoring

Macchiarulo, V, Milillo, P, DeJong M, Gonzalez Marti, J, Sanchez, J and Giardina, G 2021, Integrated InSAR monitoring and structural assessment of tunnelling-induced building deformations, Structural Control and Health Monitoring

Macchiarulo, V, Milillo, P, DeJong M, Gonzalez Marti, J, Sanchez, J and Giardina, G 2021, Integrated InSAR monitoring and structural assessment of tunnelling-induced building deformations, Structural Control and Health Monitoring

26

Conclusions

- New automated integration of InSAR monitoring and damage assessment procedures
- Large amount of high-quality building measurements at city scale
- Possibility to investigate the structural response to tunnelling for different classes of buildings

Giorgia Giardina g.giardina@tudelft.nl

