Geotechniekdag 2021

Scientific developments in the field of Soil-Structure Interaction

Ken Gavin, Professor of Subsurface Engineering, TU Delft

- Limiting base resistance = 15 MPa
- 2016 update: 30% reduction in α_p

Table 1: Reduction factors for	r selected pile types from NEN 9997-1
Pile type	α_p
Bored pile	0.35
Continuous flight auger	0.56
Driven cast-in-situ	0.70
Driven precast	0.70
Screw injection	0.63
Steel tubular (open-end)	0.7

Limit value set at 15 MPa

Case 1 Pile test Waalhaven (2017)

- Since update Eurocode 7 (NEN 9997-1) Longer foundation piles (5 to 6m in Pleistocene sand)
- More piles (>25%)
- Increase of costs for foundation piles (25% to 50%); significant installation risks; negative CO2 footprint.
- No foundation pile failures are known in Rotterdam
- Much higher risk of damage during installation

Maasylakte soil conditions: Cone resistance > 30MPa 100 blows per 25 cm!!

Case 1 Pile test Waalhaven (2017)

Case 1 Pile test Waalhaven (2017)

Case 1 Pile test Waalhaven (2017)

Ave	9.87	12.84	0.77
P100	7.49	13.29	0.56
P30	11.62	12.23	0.95
P7	10.12	14.07	0.72
P1	10.26*	11.78	0.87
No.	excluding residual	(MPa)	Ч
Pile	q _{bL} (MPa)	q _c ;ave	α

Case 1 Pile test Waalhaven (2017)

Case 1 Pile test Waalhaven (2017)

P30 P100	15.76 12.01	12.23 13.29	1.29 0.90
P7	14.25	14.07	1.01
P1	14.39*	11.78	1.22
	residual	(MPd)	
No.	q _{bL} (MPa)	q _c ;ave	α _p

Case 2 Foundation pile tests Amaliahaven (2020)

Scope:

- 4# Precast concrete piles 400x400 (scaled).
- 4# SI piles 609/850 (non scaled pile)
- 4# Vibro piles 356/480 (scaled)
- Spider-shaped test frame
- 100# SI anchors.
- Project costs ≈ €2,5 million
- ⇒Max test load 25,000 kN !!!

Case 2 Foundation pile tests Amaliahaven (2020)

Case 2 Foundation pile tests Amaliahaven (2020)

Pile	q _{b0.1} (MPa)	q _{c;ave}	α_{n}
No.	excluding	(MPa)	P
	residual		
P02	21.9	34.6	0.63
P09	21.6	32.8	0.66
P10	21.9	32.3	0.68
Ave			0.66

Case 2 Foundation pile tests Amaliahaven (2020)

q _{b0.1} (MPa)	α _p
including	
residual	
31.9	0.92
31.6	0.96
31.9	0.99
	0.96
	q _{b0.1} (MPa) including residual 31.9 31.6 31.9

Without residual load $\alpha_p = 0.66$

Impact of Axial Load Tests?

Impact of the 1st test programme

- Cost saving on pile types used in Quay Wall at Amaliahven = €10 million. In addittion a reduction of 8 kton of CO2 was achieved.
- Cost Savings on Quay Wall Upgrade at Amazonehaven €4.5 miljoen; ≈ 3 kton less CO₂.
- Projected additional cost savings in 2nd Maasvlakte of €15-20 million; ≈ 30 kton reduction in CO2.

Case 3 Full scale failure test MV piles

Scope

- 6# MV piles type HE600B
- Test load: 11,000 kN
- Results
- Failure load: 8,000-10,500 kN
- 5 a 7 m shorter piles
- Test costs ≈ €750k
- Possible cost reduction $\approx \in 1$ m.
- Sustainability ≈ 500 ton less CO₂

Case 3 Full scale failure test MV piles

- The shaft friction ratio α_t found was 1.2%.
- · Measured shaft friction was much higher than 250kPa (limiting value in design method). Values >600kPa were measured.
- · New mobilisation curves.
- High correlation with installation parameters => input for reverse engineering?

Test 1

-24

-25

Depth [m NAP] -52 -58

-29

Pile tip -30

> Ó 500 *q*₅ **[kPa]**

MSc thesis: Geotechnical bearing capacity MV piles, Frederike Westerbeke

Case 4 Euromax quay wall

Embedded instrumentation recording each 10 minutes on :

- · Diaphragm walls
- MV-piles
- · Vibro piles • Fender
- Bollards
-

ign depth -22.0 m

39 m

Case 4 Euromax quay wall

- What are the effects of cyclical loads on quay wall structures?
 - Tidal: Low amplitude, high _ frequency
 - Temperature: High amplitude, low frequency
- Should this be accounted for in design models?
- Extensive long-term monitoring data of quay walls across port of Rotterdam

Can we use test results widely?

- Example PISA Project on Monopile Design (Oxford/Imperial/TUD)
- Load tests on 0.273, 0.762 and 2m
- Two sites, one dense sand and one stiff clay
- Method was adopted for design around the world before the end of the project
- Now used in all offshore wind projects for pile diameters +10m

2017 British Geotechnical Association Fleming Award – Savings of €300,000 per offshore wind turbine

Conclusions

- Geotechnical Engineers can play a key role in addressing the grand challenges we face in society
- · More data is available to help to give us insights
- It is important that we can use this data to understand mechanisms affecting the performance of geotechnical structures
- This data allows us to iterate between our assumed model and the observed response and to develop true experience

