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The energy transition

Suggested solutions (renewables, demand response, ...) lead to

Increased decentralization (e.g. rooftop solar panels)

Increased complexity [e.g. between physical network and
communication network]

More uncertainty



3

More variability in supply

Wind, and also solar, are variable over many time-scales.
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More variability in demand
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More variability in prices
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Applied probability and energy

Stella Kapodistria Fiona Sloothaak Maria Vlasiou

Vision: mathematics can help to transform the power grid into a smart
grid, like it helped to transform phone networks into the Internet.

Specific topics:

Distribution grids with EV charging

RL, preventive maintenance (e.g. for wind turbines)

Reliability, rare events, rare-event simulation
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Mathematical challenges

Optimization

Dynamics/control

Complex systems

Probability/Statistics

AI

Market design (traditional, P2P,...)

Community building: co-organized semester on mathematics for energy
networks at the Isaac Newton Institute, Cambridge UK, spring 2019.
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Todays focus: understanding large blackouts

80B of annual economic damage to US economy from blackouts
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Unrest in South Australia (2016 - 2017)

Rolling blackouts during heat wave. Renewable energy (wrongfully)
blamed. Problems mitigated by 100 MW Tesla battery

Other controversial disruptions: Los Angeles (2018), Texas (2021),
UK (2019, concurrent disruptions at wind park + classical generator)
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Successful squirrel attacks

1/23/2017 CyberSquirrel1.com

http://cybersquirrel1.com/ 1/3

Cyber Squirrel 1
Disrupting at the highest levels, its #CyberWar4Ever!

TOTAL SUCCESSFUL CYBER WAR OPS
AS OF 2017.01.08 ­ 1748

Agent Success

Squirrel 879

Bird 434

Snake 83

Raccoon 72

Rat 36

Marten 22

Beaver 15

Jellyfish 13

Human 3*

ABOUT THIS MAP

This map lists all unclassified Cyber Squirrel
Operations that have been released to the public that
we have been able to confirm. There are many more
executed ops than displayed on this map however,
those ops remain classified.
 
Confirmation for all ops has been preserved by the
Internet Archive's WayBack Machine whenever
possible.
 
"I don't think paralysis [of the electrical grid] is
more likely by cyberattack than by natural disaster.
And frankly the number­one threat experienced to
date by the US electrical grid is squirrels." ­ John C.
Inglis, Former Deputy Director, National Security
Agency 2015.07.09
 
If you have confirmation of additional unclassified
ops please email ops AT cybersquirrel1 DOT com

MOST RECENT UNCLASSIFIED OPS

Embed View on Twitter

Tweets by  @CyberSquirrel1

3h

21 Jan

We can neither confirm nor deny our 
involvement at this time.

 

Linemen are not our enemies, much respect.

 

 CyberSquirrel Retweeted

CyberSquirrel 
@CyberSquirrel1

CyberSquirrel 
@CyberSquirrel1

Tweets may be blocked by your Ad blocker

More Tweets by @CyberSquirrel1

CYBER SQUIRREL 1 UNIT STICKERS

Support the Troops! Get your own Cyber Squirrel 1 unit stickers. Put them on
your car, laptop, breaker boxes, electric poles or utility trucks!!

Map data ©2017 Google, INEGI

Squirrel   2016   Select month   Search

We cannot model everything
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Can we mathematically understand blackouts?

We cannot model everything

Statistical physics of complex networks: aim to understand how
macroscopic phenomena evolve out of microscopic interactions.

Some quote made by some of my colleagues:

“It is not complex, but complicated”
“It is not possible to come up with a both interesting and useful result”

It can take a long time to determine the cause of a blackout - even
after it occurred.

To understand, predict and/or detect anomalies, should we use simple
black box methods from machine learning or sophisticated
mathematical models?

At least one feature of blackouts is not complicated
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Pareto laws in power grids (Hines 09)Power-law in blackout data 

PAGE 18 14-6-2018 

𝑆 = Lost power in  

       MW during blackout 

ℙ(𝑆 ≥ 𝑥) ℙ(𝑇 ≥ 𝑥) 

𝑥 𝑥 

𝑇 = # affected  customers  

       during blackout 

ℙ 𝑩𝒍𝒂𝒄𝒌𝒐𝒖𝒕 𝒔𝒊𝒛𝒆 ≥ 𝒙 = 𝒄 𝒙−𝜶 

Hines et al. (2009) 

WHY?

Goal: provide explanation using rare event analysis.
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Probabilistic analysis of rare events

1 Large deviations theory:

compute (analytically) the probability that a rare event occurs
determine the most likely way a rare event occurs, if it occurs

2 Extreme value theory:

growth rate of maxima
how to extrapolate from data

3 ’Dutch’ application: determining dike heights as part of Deltawerken

4 Other Applications

dimensioning safety/buffer/storage levels in finance, insurance,
computer, communication networks, ...
vulnerability assessment: finding weakest links in complex systems
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Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions

• Extreme Values are Very Rare

• Normal, Exponential, etc

Heavy-Tailed Distributions

• Extreme Values are Frequent

• Pareto Law, Weibull, etc

Heavy tails are not as well understood as light tails.
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Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions

• Extreme Values are Very Rare

• Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions
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Heavy tails are not as well understood as light tails.



14

Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions

• Extreme Values are Very Rare

• Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

• Extreme Values are Frequent

• Pareto Law, Weibull, etc

Systemwide rare events

arise because of

A FEW Catastrophes.

(Catastrophe Principle)

Heavy tails are not as well understood as light tails.
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New book

Free pdf at https://adamwierman.com/book/
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Heavy Tails are Everywhere:Heavy tails are everywhere!

  

Computer systems Finance 

delays, files, … losses 

1 
𝑃 𝑠𝑖𝑧𝑒 > 𝑛 ≈ 1

𝑛𝛼 

Social networks Energy Systems 

popularity, contagion blackouts 

B. Zwart (CWI) Heavy tails 4 / 43

How do heavy tails occur?
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Heavy tails can occur in many ways

Queues: exogenous factors (e.g. job sizes)

Finance: nonlinear internal dynamics (e.g. compounding losses)

Growing social networks: preferential attachment

Power systems: not well understood.
Most popular narrative to date: self-organized criticality
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Heavy tails and critical phenomena

Consider a Branching Process with Z0 = 1 and

Zn+1 =
Zn

∑
i=1

Cni.

If E[Cni] = 1 the branching process is said to be critical. The total size and
depth of the tree are heavy-tailed.

Self-organized criticality: many natural and man-made systems appear to
be self-organizing and also behave like critical systems

Attempts have been made to model cascading failures as branching
processes.
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A better explanation

Let C be the size of a city, in terms of number of people, and let T be the
size of a blackout, in terms of number of customers affected
Both have statistically significant, almost identical power law for US:

P(C > x)≈ x−1.37 P(T > x)≈ x−1.31.

German city sizes: power law with index 1.28
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log-log plots and Hill plots

US city size data (2000 census) and US outage data (NERC, 2002-2018).
Cutoff chosen according to the PLFIT method of Clauset et. al (2009).
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Mathematical model - main features

Graph with n nodes, fixed topology.
Demand at node i: Xi, with P(Xi > x)∼ cx−α .
X = (X1, . . . ,Xn).

To model electricity, we use the DC load flow model.

We consider three stages in our model:

Planning: determine line capacities/limits

Operation: determine network flows, keeping some slack, quantified by
a parameter λ .

Emergency: failure propagation, starting from a random line failure
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Main result

Let X be a generic city size, with P(X > x)∼ CXx−α .
Note that T is the blackout size [in terms of number of customers affected]

P(T > x)∼ CTx−α , x→ ∞, (1)

CT = CXn
n

∑
j=1

P(|A1|= j)(1− jλ/n)α . (2)

A1 denotes the (random) set of nodes making up the island with the
largest city in the network once the cascade is over.

Proof challenge: reduce network to the case of a single big city, and many
small cities, reducing the problem to the analysis of a cascade to a
single-sink network.
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Numerical studies

Our result holds up against several simulation studies

Generation constraints

Extending DC to AC

No heavy tailed blackout size if city sizes are uniformly distributed

IEEE test networks

Synthetic scalable networks, tailored to power grids [Wang, Scaglione,
and co-authors]

Critical assumption: frozen vs random city sizes [quenched vs annealed]
becomes irrelevant if network is sufficiently large
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SciGRID case study - Impact of λ

Figure: Dissection of biggest blackout for loading factors λ = 0.7 (left panels), λ = 0.8
(middle) and λ = 0.9 (right) in terms of the cumulative number of affected customers at
each consecutive stage as displayed in the top charts with the biggest jump colored red.
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Number of load shedding events during cascade

Figure: Histogram of the total number of load shedding events in the SciGRID network.
For a moderate loading factor λ = 0.7, nearly 99% of the blackouts only involved a
single jump. Even for a high loading factor λ = 0.9, 87% of the blackouts involve just a
single jump. The fraction of blackouts with four or more jumps remains below 5%
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Insights

P(T > x)∼ CTx−α , x→ ∞,

Using our methods, we can compute

P( blackout starts with failure at line i | large blackout occurs)

This helps to determine the most vulnerable lines.

However, line upgrades only make CT smaller. α will not chance.
Thus: upgrades provide limited effect in preventing large blackouts.

Duration of blackout is light-tailed, and seems independent of size.

It makes more sense to invest in making cities more resilient (e.g. be
capable to operate in islanded mode for several hours in case of need).
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Possible next questions

What would be a fair price for an insurance against blackouts?

How much storage do we need if we are (close to) 100 percent
renewables, and want to limit shortages to, say, 30 minutes per year?

What is the value of storage as mitigation against future rare events?

Can we design congestion management schemes with probabilistic
reliability guarantees?


