Structural Health **Condition Monitoring** & Α brief introduction **Richard Loendersloot** University of Twente 01.02.2017.

Author

Richard Loendersloot
Assistant Professor
University of Twente
Faculty of Engineering Technology
Department of Mechanics of Solid, Surfaces
and Systems (MS ³)
Dynamics Based Maintenance
Structural Health Monitoring based on Dy-
namic Behaviour of Structures and Smart Au-
tonomous Sensor Networks
r.loenderslootl@utwente.nl
https://www.utwente.nl/en/et/ms3/staff/rloendersloot/

<ロ> <同> <同> < 回> < 回>

æ

Contents of Presentation

Introduction

- Personalia Author
- Contents of Presentation
- Introduction to Monitoring
 - Motivation
 - Monitoring Process
- Over the second structural Health Monitoring
 - Principle of Vibration Based SHM
- 4 Example of Structural Health Monitoring
 - Introduction of Project
 - Sensors
 - Acousto-Ultrasonic & Damage Identification
 - Graphical User Interface
 - Discussion
 - Applications
 - Conclusions & Outlook

Motivation for Monitoring

Safety

"Design rules for aircrafts are written in blood" – lessons learned have set design rules for structural parts in aircrafts, but also raised the desire to know what is going on (or has been going on) in an aircraft

Optimisation Operational Cost

The evolution from calender based maintenance to condition based maintenance – "Just-in-time" maintenance – relies on the development of understanding the physics of damage *and* the ability to monitor the damage features

Motivation for Monitoring – continued

Life expectancy & safe extension

Optimising the use of components of a structure relies on knowledge of the loading history and/or the current structural state of the system

Motivation for Monitoring - continued

Life expectancy & safe extension

Optimising the use of components of a structure relies on knowledge of the loading history and/or the current structural state of the system

Concluding:

- Cost driven, increasing efficiency (robustness, reliability) of systems
- Safety driven, increasing reliability (robustness) of systems
- Smart use of resources, limiting waist and energy consumption (efficiency)

Motivation Process

Monitoring Process

Monitoring Types

Use based Monitoring

Measuring the times a system is used

- Uncorrelated, random use
- Correlated use, e.g. number of cycles

Load based Monitoring

Measuring the loads/load levels on a structure

- Forces/Moments
- Accelerations
- Vibration levels

6 / 29

Motivation Process

Monitoring Types

Structural Health & Condition Monitoring

Measuring the current capability of a structure or system to fulfill its intended function

- Strain measurements
- Damage detection
- Degradation measurement
- ...

Principle

Monitoring Process

Feature Damage sensitive parameter

Classifier Quantitative number indicating the current condition

Ooijevaar, T.H. (2014) Vibration based structural health monitoring of composite skinstiffener structures. PhD-Thesis, University of Twente. ISBN 978-90-365-3624-0

Principle

UNIVERSITY OF TWENTE.

Diagnostics

Estimate current state of the structure, four stage process:

Operational evaluation

Diagnostics & Prognostics

- 2 Data acquisition
- Feature extraction
- Classification

Prognostics

Estimate remaining life time, using

- Damage evolution models
- Past experience

Principle

Performance

Performance levels

- Verification of presence
- 2 Determination of location
- Stimation of extent/severity
- Prediction of remaining service life

Local versus global methods

Global Complete structure, limited in sensitivity

Local Focus on part of structure, prior knowledge damage critical locations required – Hot spot monitoring

EU FP7 SARISTU Smart Intelligent Aircraft Structures

Objectives (amongst others, see www.saristu.eu):

- Limit the integration cost of Structural Health Monitoring (SHM) systems
- \bullet In-service inspection cost reductions of up to 1%

Project

- 64 partners, 16 countries if I counted correctly...
- 11 Application Scenario, 2 Integration Scenarios (full scale demonstrators: wing and door surrounding)

Application Scenario 06, Impact damage assessment using integrated ultrasonic sensors

- NDI Inspection of door surrounding structure using guided waves
- Tool for damage assessment

Objective

UNIVERSITY OF TWENTE.

Development of a GUI-based tool to assess impact damage in a composite structure

Tool $MATLAB^{\bigcirc}$ based

Impact damage

Delamination of \sim 30 mm diameter; Barely Visible Impact Damage (BVID)

Composite structure

Full scale door surrounding

Door Surrounding Structure

UNIVERSITY OF TWENTE.

Richard Loendersloot

Door Surrounding Structure

Introduction to Sensors

UNIVERSITY OF TWENTE.

- Accelerometer
- Force transducer
- Laser-vibrometer
- Strain gauges
- Piezo-electric sensor
- Optical fibre
- MEMS

Sensors & Monitoring

Suitability for SHM or CM depends on level of integration of the sensor in the structure!

Introduction Sensors AU-DI GUI Discussion

Piezo-electric sensor

- Strain measurement
- High level of integration
- Low cost, inversely proportional to accuracy
- High frequency range
- Sensor, actuator and energy harvester
- Low strain, no resistance to tensile strain
- Macro Fibre Composites: high level of flexibility
- Sensitive to fatigue
- Extensive wiring (can be embedded)

http://www.ndk.com/en/sensor/ultrasonic/basic02.html http://icb.nasa.gov/archive/2006

Introduction Sensors AU-DI GUI Discussion

Optical Fibres

- Reflection and refraction of light
- Fibre bragg grating
- Strain measurement
 - Extreme accuracy possible for static strains
 - Lower performance for dynamics strains
- Temperature dependency
- Multiplexing, single wire with multiple sensors
- Light source / expensive data acquisition

Micro Electronic Mechanical Systems

- Typical size 1–100μm
- High level of integration
- Limited ranges
- Limited signal strength
- Low power usage
- Various types of sensors
 - piezo-electric
 - accelerometer
 - gyroscope
 - microphones
 - etc....

Piezo-electric Wafer Active Sensors

UNIVERSITY OF TWENTE.

- Piezo-electric diaphragm
- PI151/155/255: low cost
- Embedded in structure, e.g. via co-bonding
- Available as film

D. Schmidt, A. Kolbe, P. Wierach, S. Linke, S. Steeger, F. v. Dungern, J.

Tauchner, C. Brue and B. Newman, Development of a door surrounding structure with integrated structural health monitoring system. In *Smart Intelligent Aircraft Structures (SARISTU) – Proceedings of the Final Project Conference*, Ed. P.-C. Woelcken, M. Papadopoulos, Springer 2015, p935-945

Piezo-electric Wafer Active Sensors

UNIVERSITY OF TWENTE.

- Piezo-electric diaphragm
- PI151/155/255: low cost
- Embedded in structure, e.g. via co-bonding
- Available as film

D. Schmidt, A. Kolbe, P. Wierach, S. Linke, S. Steeger, F. v. Dungern, J.

Tauchner, C. Brue and B. Newman, Development of a door surrounding structure with integrated structural health monitoring system. In *Smart Intelligent Aircraft Structures (SARISTU) – Proceedings of the Final Project Conference*, Ed. P.-C. Woelcken, M. Papadopoulos, Springer 2015, p935-945

Principle of Acousto-Ultrasonics

UNIVERSITY OF TWENTE.

Actuator

Sensor

- High frequency wave packet sent by actuator
- Guided waves: $f \sim \in \langle 50, 500 \rangle \, \text{kHz}$
- Wave traveling in radial direction in homogeneous material
- Signal received by sensor
- Damage alters signal received

RAPID

UNIVERSITY OF TWENTE.

Reconstruction Algorithm for Probabilistic Inspection of Defects

Each path covered only in single direction: assumption of reciprocity $(i \to j \equiv j \to i)$

Probability Distribution Function

UNIVERSITY OF TWENTE.

Actuator/Sensor path k transducer i to transducer j

Damage intensity I(x, y)

$$I(x,y) = \sum_{k=1}^{N_p} (1-\rho_k) \left(\frac{\beta - R(x,y)}{\beta - 1} \right)$$

Correlation coefficient ρ_k

- 1: no damage
- $<\!1$: damage

Damage coefficient d_k

0: no damage >0: damage

$$ho_k=rac{1}{d_k+1};\; d=rac{1}{
ho_k}+1$$

Probability distribution function

UNIVERSITY OF TWENTE.

Actuator/Sensor path k transducer i to transducer j

$$R(x, y) = \begin{cases} \frac{L_i + L_j}{L_{ij}} & \text{if } R(x, y) < \beta \\ \beta & \text{if } R(x, y) \ge \beta \end{cases}$$

 β size parameter ellipse

Damage Identification Algorithms

Method Name	Abbr.	Mathematical Formula
Correlation Coefficient	СС	$\rho = \frac{\sum\limits_{i=1}^{N} (s_{H,i} s_{D,i}) - \sum\limits_{i=1}^{N} (s_{H,i}) \sum\limits_{i=1}^{N} (s_{D,i})}{\sqrt{\sum\limits_{i=1}^{N} (s_{H,i}^{2}) - \left(\sum\limits_{i=1}^{N} (s_{H,i})\right)^{2} \sqrt{\sum\limits_{i=1}^{N} (s_{D,i}^{2}) - \left(\sum\limits_{i=1}^{N} (s_{D,i})\right)^{2}}}$
Signal Amplitude Peak Ratio	SAPR	$DI = \frac{\max(S_H)}{\max(S_D)}$
Signal Amplitude Peak Squared % Differences	SAPS	$DI = \left(\frac{\max(S_H) - \max(S_D)}{\max(S_H)}\right)^2$
Signal Sum of Squared Differences	SSSD	$DI = \frac{\sum_{i=1}^{N} [(s_{H,i} - s_{D,i})^2]}{\sum_{i=1}^{N} [s_{H,i}^2]}$
Discrete Wavelet Transform	DWT	$DI = \frac{\sum\limits_{i=1}^{N} \left[\left(Dwt(s_{H,i}) - Dwt(s_{D,i}) \right)^2 \right]}{\sum\limits_{i=1}^{N} \left[\left(Dwt(s_{H,i}) \right)^2 \right]}$
Ratio of Covariance Matrix Eigenvalues	RCME	$\rho = 1 - \frac{\lambda_2}{\lambda_1}$

UNIVERSITY OF TWENTE.

Objectives:

- Analysis of on the fly data: Inspection
- Investigation on data: Development of inspection

Objectives:

- Analysis of on the fly data: Inspection
- Investigation on data: Development of inspection

Expectations:

- Ability to assess the structure with complex technologies, but without in-depth knowledge of these technologies
- Ability to develop insight in damages in composite structure, accuracy of technologies

Objectives:

- Analysis of on the fly data: Inspection
- Investigation on data: Development of inspection

Expectations:

- Ability to assess the structure with complex technologies, but without in-depth knowledge of these technologies
- Ability to develop insight in damages in composite structure, accuracy of technologies

Richard Loendersloot, Inka Buethe, Pavlos Michaelides, Maria Moix-Bonet and George Lampeas, Damage Identification in Composite PanelsMethodologies and Visualisation. In *Smart Intelligent Aircraft Structures (SARISTU) – Proceedings of the Final Project Conference*, Ed. P.-C. Woelcken, M. Papadopoulos, Springer 2015, p581-606

UNIVERSITY OF TWENTE.

alisation		Data 1	/isualisation			
Raw Data						
Damage Surface Plottype	Frequencies Se	elected				
P-based Diag. Imaging 🔹 👻	50000	0000				
max 👻 Multi frequency	80000 80	0000	800	- 4 - 4		
1.05 beta		E	700 - 0 0-	a3 a4 a5		(* 181)
0.56 Threshold	Add	Remove	600 -			
4	Add all	Remove all	500	•8 •9 •10	•30 •29 •28 •21	-26
3 • Reference	Normalised		400 -			
2 v Data	undefined - Wor	réSpace	300	0+13 +14 +15	.35 .34 .33 .35	.31
Plot Contour DI	Isolate	Exclude	200 -			
			100 - Pie Pi7	18 .19 .20	.40 .39 .38 .3	.36
Noise Estimation Plottype	Frequencies Se	elected	0 200	400 600	800 1000	1200
P-based Diag. Imaging 🔹	50000	8	0 200	400 000	800 1000	1200
max 👻 Multi frequency	80000 90000					
1.05 beta		÷				
mean 👻 Mean-max-min	Add	Remove			La Deserve and Des	0.0407
1-2 - Combination	Add all	Remove all	U			0.2187
Piot	undefined - V/or					

æ

▶ < E >

UNIVERSITY OF TWENTE.

æ

《曰》《圖》《臣》《臣》

UNIVERSITY OF TWENTE.

æ

《曰》 《圖》 《臣》 《臣》

UNIVERSITY OF TWENTE.

æ

《曰》《圖》《臣》《臣》

Visualisation

Discussion

UNIVERSITY OF TWENTE.

	I _{thrs} [%]	<i>x</i> [mm]	<i>y</i> [mm]	A [mm ²]
NDI		835	618	574.06
$A_0 \ mode$	95	833.2	621.5	586.9
S_0 mode	94	833.2	531.3	25.1

Maria Moix-Bonet, Benjamin Eckstein, Richard Loendersloot and Peter Wierach, Identification of barely visible impact damages on a stiffened composite panel with a probability-based approach, IWHSM-2015, Stanford, USA Maria Moix-Bonet, Peter Wierach, Richard Loendersloot and Martin Bach, Damage Assessment in Composite Structures Based on Acousto-UltrasonicsEvaluation of Performance. In Smart Intelligent Aircraft Structures (SARISTU) – Proceedings of the Final Project Conference, Ed. P.-C. Woelcken, M. Papadopoulos, Springer 2015, p619-632

Applications of Monitoring

Aerospace Composite structures, bonded elements, delamination identification. (FP7 SARISTU, NLR)

Wind Turbine Composite (blade) structures, support structures, gears, bearings. (TKI Wind op Zee - SLOWIND & WiMOS)

Water Distribution Inline inspection of AC and PVC pipelines using ultrasound and development of smart pipes with embedded sensors (Wetsus – Centre of Excellence for Sustainable Water Technology - 2 projects)

Railinfra Monitoring of rail assets: rails and switches, wear and damage (Strukton)

Infrastructure Monitoring of bridges (road/rail, concrete/steel), condition assessment and life time expectance (FP7 DestinationRail)

Conclusions and Outlook

- Monitoring offers insight in what happens with structure or system
- Field of application is broad
- Often high-technology required, but many solutions highly matured
- Relevance of monitoring for future applications high
- Many fields yet unexplored; impact of monitoring can be much higher: "circular economy"

Thank you for you attention Questions?

Richard Loendersloot University of Twente

01.02.2017.