VWS MPP SYSTEMS

The power of teamwork

MPPE: Macro Porous Polymer Extraction System

Contents presentation

Why MPPE for FLNG?

- 1. Introduction / safety moment
- 2. Veolia Water
- 3. MPPE Technology & MPP Systems
- 4. Why MPPE for FLNG?
- 5. Shell Prelude MPPE unit
- 6. Where are we now?

Akzo Nobel MPP Systems

VWS MPP Systems

History of Veolia Environnement

- 1853
 Founding of Compagnie Générale des Eaux (CGE)
- 1875
 Founding of Compagnie Générale Française de Tramways
- 1985
 Forerunners of multiservice contracts
- 1998CGE becomes Vivendi
- 1999
 Vivendi Environnement created
- 2005A new single name, Veolia

Four businesses

serving the environment

29,6 milliards d'euros de chiffre d'affaires Plus de 331 000 collaborateurs dans 77 pays

Water

The global benchmark for water services €12.6 billion

Waste management

The global benchmark for waste management and resource recovery €9.7 billion

Energy services

The global benchmark for energy optimization €7.3 billion

Transport

The global benchmark for sustainable mobility

€8 billion (perimeter veolis Transdev)

VWS industrial activities

- Added value for our customer through our unique knowledge, technologies and services
- Provide sustainable solutions from standard equipment to turnkey installation in order to minimize customers' environmental footprint
- Worldwide competences and experience on many capabilities
- Market segments
 - →Automotive
 - → Biofuels
 - →Chemicals
 - → Exploration & production
 - →Food & Beverage
 - → Hydrocarbon processing
 - →Oil & Gas (Upstream & Downstream)
 - → Pharmaceuticals
 - →Primary metals
 - → Power
 - →Pulp & Paper

Formosa Heavy Industry

(Philippines)

Chevron San Ardo (United States)

Capabilities

- → Process Water
- → Produced Water
- → Wastewater
- → Sludge & biosolids
- → Air & Gas
- → Control & Instrumentation
- → Services

Turbomach (Spain)

VWS municipal activities

- Ability to carry out large projects from proposal to completion
- International network of local BU with long term partnership
- Quick reactivity and close working relationship combined with a large technologies portfolio allowing us to work with:
 - →Major cities
 - →Coastal & Tourist area
 - →Rural municipalities

Qingdao Maidao (China) Calgary (Canada)

Burj Khalifa lake – Dubai **(UAE)**

Capabilities

- →Drinking Water
- → Wastewater
- →Sludge & biosolids
- →Air & Gas
- →Control & Instrumentation
- → Services

Lucien Grand (France)

Creating Water Solutions for the UPSTREAM OIL & GAS Industry

VWS OIL & GAS

Integrated approach ensuring quality, safety, reliability

raining • Package & turnkey plants • Water cycle analysis • Pre-qualification proce

ants • Testing • Commissioning • Technologies integration • Refurbishment & upgrade • Process • Audits

Definition of water needs 🔹 Preliminary studies 🔹 Engineering 🔹 Start-up 🔹 Construction 🔹 Supervision 🔹 Standard equipment & modular solutions 🔹 Maintenanc

Solutions & Technologies

Creating Water Solutions for the DOWNSTREAM OIL & GAS Industry

VWS OIL & GAS

Innovative combinations of technologies and services for fully integrated projects

Training • Package & turnkey plants • Support & service

Water cycle analysis Pre-qualification process Pilot plants Refurbishment & upgrade

Commissioning Process audits Technologies integration

Contents presentation

Why MPPE for FLNG?

- 1. Introduction
- 2. Veolia Water
- 3. MPPE Technology & MPP Systems
- 4. Why MPPE for FLNG?
- 5. Shell Prelude MPPE unit
- 6. Where are we now?

Removal of Dissolved and Dispersed Hydrocarbons

from

Offshore Produced Water,

Wastewater,

Process water,

Groundwater,

with Macro Porous Polymer Extraction (MPPE)

by

VWS MPP Systems B.V. www.vwsmppsystems.com

MPP Structure

MPPE process (1)

MPPE process (2)

MPPE Extraction versus AC-adsorption

- Toluene supersedes Benzene
- More "other" molecules requires more Activated Carbon
- Sensitive for fouling

- Benzene
- Molecules do not "see" each other
- More "other" molecules require <u>not</u> more MPPE
- Not sensitive for fouling

Components removable with MPPE

Aromatic and Aliphatic Compounds

Benzene Toluene

Ethyl Benzene

Xylene(s) Cumene

Limonene

Nitrobenzene

Higheralkylated phenols

Octanol Nonanol Decanol

Hexane

Heptane

MIBK

TetraHydroTiophene

 CS_2

Tetramethyltetrahydrofuran

MTBE

Etc.

Halogenated/

Chlorinated Compounds

Monochloromethane

Dichoromethane

Trichloromethane

Tetrachloromethane

Dichloroethane (1,1 & 1,2)

Trichloroethane

Tetrachloroethane

Chloroethylene

Dichloroethylene

Trichloroethylene

Tetrachloroethylene

Trichloropropane

Chlorobutadiene

Hexachlorobutadiene

Monochlorobenzene

Dichlorobenzene

Chlorobenzenes

Chloroaphtalene

Hexachlorocyclohexane

Monochlorophenol

Dichlorophenol Trichlorophenol

Dichloro-di-isopropylether

Dioxins

Etc.

Polyaromatic Hydrocarbons

PCBs

Acenaphthylene

Acenaphthene

Fluorene

Anthracene

Fluoranthene

Pyrene

Benz(a) anthracene

Chrysene.

Etc.

NPDs

Naphtalenes

Phenanthrenes

Dibenzothiophenes

MPPE Features Flexibility/ Robustness

- High reduction factor
- Reduction factor independent of inlet concentration
- Robust against water environment (surfactants, salts, pH range 3 9 etc.)
- Predictable performance
- Flow/ Inlet concentration flexibility
 - 10% lower flow: 50% higher inlet concentration possible
 - lower inlet concentration: higher flow possible
- Capacity flexibility
 - turn up / down ratio e.g. 0 to 150% of design capacity
- Batch wise operation; Immediate performance at start up
- Separated hydrocarbons (~ 100% pure) for (re)use
- No waste stream, no air emission
- 100% recovery of water and hydrocarbons

Markets / Applications

- Industries
 - Offshore
 - Oil & Gas
 - Petrochemical
 - Chemical
 - Pharmaceutical
 - Coatings
 - Electronics
- Government
- Offshore produced water : 25%
 Industrial waste water : 35%
 Groundwater / DNAPL : 40 %

- Customers e.g.
 - TOTAL
 - Gaz de France
 - NAM (Shell/Exxon)
 - Statoil
 - Shell
 - Dupont
 - Degussa
 - Albemarle
 - AkzoNobel
 - Philips
 - Woodside
 - Western Refining
 - Inpex
 - BP

Elf Aquitaine / Total / Vermilion Harlingen gas produced water treatment

Column size (m): d = 0.8, h = 2.0

Dispersed oil and BTEX removal Since June 1994

- Produced water offshore gas
- Condensed water from MEG unit
- Dissolved / disperse aromatics
 1,500 − 2,500 ppm → < 0.5 ppm
- Dispersed oil (aliphatics)
 160 350 ppm → < 0.5 ppm
- Flow 4 m³/hr

Since June 1997

- Produced water offshore gas
- Condensed water MEG unit
- Rainwater / fun off water
- Groundwater
- 6 m³/hr

AkzoNobel / Organon (Merck SD) groundwater treatment 1994

- Oss (NL)
- Pharmaceutical RM supplier
- 40 m³/hr
- Aromatics, chlorinated (250 ppm)
- Effluent < 0.5 ppm
- Iron 48 ppm, Ca 65 ppm
- Since December 1995

MPP SYSTEMS

MPPE groundwater Lenoir (USA)

MPPE Schwarze Pumpe Groundwater 2002

Two years of intensive testing

Five MPPE units, LMBV, Schwarze Pumpe Germany

20 m³/hr

233,000 μ g/I (ppb) BTEX

μg/l (ppb) μg/l (ppb) Naphatalene 500

153 **PAHs**

> 99% removal

Performance guaranteed

Two MPPE units, LMBV, Lauchhammer Germany

e ReM SO

- Groundwater Dec. 2010
- 3 m³/h
- BTEX 30,000 → 150 ppb
- PAK 500 → 15 ppb
- Performance guaranteed

Germany plant Ruhrgebiet Groundwater 120 m3/h

MPPE treatment of Tank Cleaning water with waste / ground / surface water

DOW;; LBC Rotterdam

Western Refining Gallup USA

3 D model Western Refining USA MPPE unit, built in USA, start up for April 2012

MPPE System Gaz de France (France)

- Underground gas storage
- Processwater
- 3 m³/hr (13 gpm)
- THT (odour)
- $50 \rightarrow 0.5 \text{ ppm}$
- ≥ 99% removal
- Since 2001

Contents presentation

Why MPPE for FLNG?

- 1. Introduction
- 2. Veolia Water
- 3. MPPE Technology & MPP Systems
- 4. Why MPPE for FLNG?
- 5. Shell Prelude MPPE unit
- 6. Where are we now?

Survey Emission Regulations 1/3

North East Atlantic / North Sea

• 1978: 40 ppm dispersed oil (PARCOM)

• 2007: 30 ppm dispersed oil (OSPAR)

Individual countries

The Netherlands: Reduction Benzene / Aromatic discharge

• 1994: Benzene / Aromatic reduction of 80% in 2000

• 1998: NOGEPA study 55 technologies (MPPE Number 1)

• 1999: NAM offshore fieldtest L₂ (OTC paper)

• 2002 / 2003: First commercial offshore MPPE units TOTAL; NAM

NAM (Shell/Exxon) offshore MPPE field test 1999

NAM (Shell/Exxon) offshore MPPE field test 1999

MPPE Offshore Demo unit

MPPE

MPPE Offshore demo unit

MPPE Separator

TOTAL offshore F15A (unmanned)

- Produced water from offshore gas
- Removal of dispersed and dissolved Aliphatics, Aromatics, and PAHs
- Robust against salt, surfactants, corrosion inhibitors
- Fulfilling TOTAL's environmental goal beyond present legal requirements
- Remote controlled to enable unmanned operation
- To save space the MPPE unit is installed partially over the platform edge

MPPE remote control

Survey Emission Regulations 2/3

North East Atlantic / North Sea (OSPAR)

• 1978: 40 ppm dispersed oil (PARCOM)

2007: 30 ppm dispersed oil (OSPAR)

Individual countries

The Netherlands: Reduction Benzene / Aromatic discharge

• 1994: Benzene / Aromatic reduction of 80% in 2000

• 1998: NOGEPA study 55 technologies (MPPE Number 1)

1999: NAM offshore fieldtest L₂ (OTC paper)

• 2002 / 2003: First commercial offshore MPPE units TOTAL; NAM

Norway

2002: Zero Harmful Discharge in 2007

Environmental Impact Factor (EIF)

Oil & Gas produced water composition

Hydrocarbons	Non polar	More polar	
Dispersed oil Floating (sheen)	Alphatics: 200-1000 ppm Separators / flotation "Standard": 40 ppm "Advanced": 10-30 ppm	Negligible	
Dissolved Not floating			
"non toxic"	Aliphatics	Alcohols/Methanol/Glycol Carboxylic acids Hundreds of ppm	
Toxic Carcinogenic Mutagenic	Aromatics BTEX 200 – 3,000 ppm PAHs 200 – 80,000 ppb	Alkyl Phenols Ten – Hundreds ppb	

Compounds

ppm

Composition

Dispersed oil =

DA

Dispersed hydrocarbons =

Dispersed Aliphatics = floating

Dissolved hydrocarbons

Toxic:

- Benzene

- Toluene

Aromatics 200 – 3,000

- Ethyl benzene

- Xylene

- PAHs and NPDs

0.2 - 80

- Alkyl Phenols

0.1 - 0.2

Dissolved hydrocarbons

Readily Biodegradable

hundreds

Polar:

- Acids

- Alcohols (Methanol)

E

T

Ε

X

PAHs

APh

Polar

Composition Compounds **Ospar** ppm Dispersed oil = 200 - 1,000 (gas) DA **Dispersed hydrocarbons =** DA **Dispersed Aliphatics = floating Dissolved hydrocarbons** B B Toxic: - Benzene **Aromatics 200 – 3,000** - Toluene Ε Ε - Ethyl benzene X X - Xylene - PAHs and NPDs 0.2 - 80 **PAHs PAHs** - Alkyl Phenols 0.1 - 0.2 APh APh **Dissolved hydrocarbons Readily Biodegradable** hundreds Polar Polar Polar: - Acids - Alcohols (Methanol)

Environmental Impact Factor

- Investigation Norwegian Offshore Industry (esp. Statoil)
 - Impact of Individual compounds on Environment
- Type of molecules and concentration determine Impact on Environment
- More toxic molecules:
 - Higher multiplication factors to reflect environmental impact
- Environmental Impact Factor: specific molecules or groups of molecules are expressed in % of the total 100% Environmental Impact of that particular produced water stream in that particular environment

Compounds

ppm

Composition

Dispersed oil =

Dispersed hydrocarbons =

Dispersed Aliphatics = floating

Dissolved hydrocarbons

Toxic:

- Benzene

- Toluene

- Ethyl benzene

- Xylene

- PAHs and NPDs

- Alkyl Phenols

Aromatics 200 – 3,000

0.2 - 80

0.1 - 0.2

Dissolved hydrocarbons

Readily Biodegradable

hundreds

Polar:

- Acids
- Alcohols (Methanol)

DA

E

T

Ε

X

PAHs

APh

Polar

^{*} EIF = Environmental Impact Factor

^{*} EIF = Environmental Impact Factor

MPPE effect on EIF

^{*} EIF = Environmental Impact Factor

MPP SYSTEMS

Composition produced water gas / condensate and oil

Gas produced water Oil produced water

Flow rates (m³/h)

$$< 1 - 150 / 180$$

$$100 - > 1000$$

Inlet (ppm)

Aliphatic HC(dispersed oil) 200 – 1400 (484*) 40 - 100 (15*)

Aromatics (BTEX)

300 - 3000 (482*) 30 - 70 (6*)

PAHs

4 - 80

0.5 - 2

TPH

700 - 4000

> 200

Typical goals

Disp. oil < 10 - 30

Disp. oil < 10 - 30

BTFX < 10

PAHs < 0.1 - 0.01

TPH < 10 - 30

FIF: 7ero Harmful

^{*} Shell average offshore data Tekna 2012

Gas / Condensate and LNG produced water treatment

- 1. GAS production: produced water after separator /degasser
- 2. Gas drying (glycol): MEG REGEN Produced water

A. 1 + 2

MPPE Process removal of:

1. Dispersed oil (aliphatics) 200 - 1.400 ppm: > 99%

Dissolved and dispersed aromatics (RTEX)

aromatics (BTEX) 30

3. PAHs

4. Alkyl Phenols

5. Chemicals

300 - 3.000 ppm: > 99%

ppm - 4 - 80: > 99%

ppb levels: ~ 30%

ppb / ppm: ~ 20 - 50%

B. Onshore, if desired Bio treatment to remove: Methanol, Glycol, Carboxylic acids, etc.

New Offshore Tie-ins and impact on On-Shore Facilities Field Case Kollsnes

Statoil Kollsnes Phenomena

Q3 2005

Treating offshore Produced Water of 4 platforms

Start up extra platform (Kvitebjørn)

• Equal TOC levels!

• Bioactivity ceased! Q1 2005

MPPE installed
 Q2 2005

Biotreatment recovered within three months

MPPE removes

Aliphatics (dispersed oil) > 99%

• BTEX > 99%

• PAHs > 99%

Alkyl Phenols ~ 30%

Statoil Kollsnes conclusions

- Equal TOC levels but Bio ceased?
- 20 100 times more and varying BTEX contents (up to 600 ppm)
- 10-50 times more PAHs and C_2-C_4 Phenols
- Poisoned biological mass
- BTEX > 12 mg/l could be toxic to biological mass
- Monitoring toxic content (BTEX, PAHs); not TOC

MPPE Statoil Kollsnes

MPPE

An MPPE unit was rented May 2005.

Statoil Kollsnes (Norway) produced water

StatoilHydro / Shell Ormen Lange (Norway) produced water

MPPE for Statoil - Shell ORMEN LANGE Gas Produced Water Treatment

MPPE Unit removes the:

- Dispersed oil (aliphatics)
- Dissolved and dispersed aromatics (BTEX)
- Poly Aromatics (PAHs)
- Flow rate 70 m³/h
- > 99% removal of BTEX, PAHs, Aliphatics (oil)
- In operation since October 2007

MPP SYSTEMS

Ormen Lange Project

- World's most challenging gas field development project
- Makes Norway world's largest exporter of natural gas
- Largest industrial project ever carried out in Norway
- 100 kilometer from the northwest coast of Norway

Survey Emission Regulations 3/3

- North East Atlantic / North Sea (OSPAR)
 - 1978: 40 ppm dispersed oil (PARCOM)
 - 2007: 30 ppm dispersed oil (OSPAR)

Individual countries

- The Netherlands: Reduction Benzene / Aromatic discharge
 - 1994: Benzene / Aromatic reduction of 80% in 2000
 - 1998: NOGEPA study 55 technologies (MPPE Number 1)
 - 1999: NAM offshore fieldtest L₂ (OTC paper)
 - 2002 / 2003: First commercial offshore MPPE units TOTAL; NAM
- Norway
 - 2002: Zero Harmful Discharge in 2007
 - Environmental Impact Factor (EIF)
- Australia
 - 2007: 50 \rightarrow 30 ppm dispersed oil
 - 2009: Total Hydrocarbons < 30ppm (dispersed **and dissolved**)
- Egypt
 - 2012: Law 4 (PAHs: "ZERO")

Location Pluto LNG Burrup plant

Burrup, Peninsula, Western Australia

Woodside Pluto (Australia) produced water

Inpex Ichthys project

Inpex Ichthys
MPPE unit

MPPE unit \

Contents presentation

Why MPPE for FLNG?

- 1. Introduction
- 2. Veolia Water
- 3. MPPE Technology & MPP Systems
- 4. Why MPPE for FLNG?
- 5. Shell Prelude MPPE unit
- 6. Where are we now?

MPPE unit for first Floating LNG plant in the world; Shell Prelude - Australia

Shell Prelude project

- First Floating LNG plant in the world
- FLNG technology reduces project costs and the environmental footprint of an LNG development
- Delivery April 2013
- Direct discharge after MPPE treatment

MPPE for removal of:

- Dissolved and dispersed oil (aliphatics)
- Dissolved and dispersed aromatics (BTEX)
- Poly Aromatic Hydrocarbons (PAHs)
- Flowrate: 140 m³/h
- Removal of BTEX, PAHs, Aliphatics (oil)

Shell Prelude Floating LNG

- Treatment + liquefaction
- 488m x 74m: largest floating structure
- Avoids: pipelines, coastal modifications, land use
- Lower environmental footprint
- Flexibility to relocate and reuse
- For "stranded" gas assets
- A game changer

Shell Prelude MPPE unit

Shell Prelude MPPE unit

"Why MPPE for FLNG"

- Removal of toxic content (Oil, BTEX) for Zero Harmful Discharge
- Separation performance independent of inlet concentration (peak loads!)
- Robust against water environment (surfactants, inhibitors, chemicals)
- Recovered hydrocarbons ready for use as a product
- 100% Recovery of separated hydrocarbons and water
- No waste stream
- Remote controlled

MPPE performance in offshore produced water

	Influent levels ppb	Removal %
Gas / Condensate / LNG		
BTEX (dissolved/dispersed)	300,000 – 3,000,000	> 99%
Aliphatics (dispersed oil)	100,000 - 1,300,000	> 99%
PAHs	200 - 80,000	> 99%
Alkyl Phenols	14,000	~ 30%
Field chemicals, inhibitors	ppm levels	20 – 50%
Environmental Impact Factor		95 – 99%
Oil (Total, NAM,	StatoilHydro)	
BTEX	30,000 – 70,000	> 99%
Aliphatics (dispersed oil)	13,500 – 40,000	80 – 95%
PAHs	500 – 2,100	> 99%
Alkyl Phenols	ppb levels	~ 30%
Environmental Impact Factor		> 85%

MPPE

MPPE Robustness (1) Design / Actual

MPPE robustness (2): Surfactants (NAM)

Contents presentation

Why MPPE for FLNG?

- 1. Introduction
- 2. Veolia Water
- 3. MPPE Technology & MPP Systems
- 4. Why MPPE for FLNG?
- 5. Shell Prelude MPPE unit
- 6. Where are we now?

MPPE observed Mercury Removal

- NAM offshore field test 1999 (OTC paper)
- Bench Mark studies 2011
- Cadmium, lead, nickels : 0.0001 0.014 ppb
- Mercury inlet : 3 − 120 ppb
- Cases with removal %
 - a. 5 years: 81 85 %
 - b. 8 years: > 92%
 - c. 9 years: 98 99.0 %
 - d. 10 years: 83 98 %

Future MPPE: Shale oil

Future MPPE: Shale gas

Shell Prelude MPPE unit

Questions?