

Nieuwe onderzoeksmogelijkheden met de Delftse reactor

Jeroen Plomp, Delft

Available probes

- 2 MW pool-type research reactor
- Unique radiation available for research:
 - Neutrons
 - Positrons
 - Radio isotopes (α,β,γ)

DIT IS EEN OVERGANG DEZE DIA NIET VERWIJDEREN A.U.B.

Neutron to see the invisable

 The Nobel Prize in Physics 1994 was awarded "for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter" jointly with one half to Bertram N. Brockhouse "for the development of neutron spectroscopy" and with one half to Clifford G. Shull "for the development of the neutron diffraction technique"

How atoms/spins move and where atoms/spins are

Clifford G. Shull The Nobel Prize in Physics 1994

Born: 23 September 1915, Pittsburgh, PA, USA

Died: 31 March 2001, Medford, MA, USA

Affiliation at the time of the award: Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

Prize motivation: "for the development of the neutron diffraction technique"

Prize share: 1/2

Bertram N. Brockhouse The Nobel Prize in Physics 1994

Born: 15 July 1918, Lethbridge, Alberta, Canada

Died: 13 October 2003, Hamilton, Ontario, Canada

Affiliation at the time of the award: McMaster University, Hamilton, Ontario, Canada

Prize motivation: "for the development of neutron spectroscopy"

Prize share: 1/2

Neutrons versus x-ray

X-ray versus neutron

ŤUDelft

Neutrons are remarkable probes

Hydrogen from flowers clearly visible in lead "shielding"

User facilities in Europe

What type of field neutron users

Neutron:

- Battery materials
- Magnetism
- Colloid science
- Food science
- Polymers science
- Drug delivery systems
- Cultural heritage
- Fundamental physics
- Hydrogen economy
- CO2 storage
- Etc.

ŤUDelft

Delft game changer, cold source project

Neutron: length scale to analyse

Structure analysis length-scale:

		Physics and Chemistry	1			Engineering)
Diffraction	Reflection	Sn	nall Angle Scattering		R	omography	
Atoms	Layered structure	Colloids	Aggregates	Cell	Texture	İ Art	Engine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻² [m]

Instruments in Delft

Instruments for material research

OYSTER

Diffraction	Reflection						
Atoms	Layered structure	Colloids	Aggregates	Cell	Texture	Art	Engine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻² [m

Neutron diffraction

Structure analysis length-scale 0.1 nm to 1 nm Neutron powder diffraction, bulk

λ=2dsinθ θ θ θ d

Powder diffraction, Pearl

The PEARL calibration data for the 1.67AA (533) setting at room temperature. This data was measured for 1 hour on 1.22gr of NIST sapphire.

Diffraction	Reflection							
Atoms	Layered structure	Colloids	Aggregates	Cell	Texture	<u> </u>	Engi	ine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	[m]

Neutron diffraction

Structure analysis length-scale 0.1 nm to 1 nm

Neutron powder diffraction, bulk

Palladium

Diffraction	Reflection							
Atoms	Layered structure	Colloids	Aggregates	Cell	Texture	<u>Årt</u>	Eng	ine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	[m]

Neutron diffraction

In situ of loading and unloading of Hydrogen

REACTOR INSTITUTE DELFT

TUDelft

Powder diffraction, Pearl

- Induction based heating
- Standard operating range RT-1200
- Max 1800 degrees °C
- Used to study molten salts & uranium samples

ŤUDelft

Structure analysis length-scale 5 nm to 150 nm Neutron reflection, surface, layers

		Physics and 0								
	Reflection									
Atoms	Layered structure	Colloids		Aggregates			Texture	Art	Eng	ine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵		10 ⁻⁴	10 ⁻³	10 ⁻²	[m]

Structure analysis length-scale 1 nm to 200 nm Neutron reflection, surface, layers

Example: Hydrogen sensing materials

JDelft

 \rightarrow Key to understanding the thermodynamics and sensor response is to know the hydrogen concentration in the sensing layer

Example: Hydrogen sensing materials

		Physics and Chemistr	y					
		Sma						
Atoms	Layered structure	Colloids	Aggregates	Cell	Texture	Art	Eng	ine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10-4	10 ⁻³	10 ⁻²	[m]

Small Angle Neutron Scattering (SANS)

Structure analysis length-scale 1 nm to 500 nm

incident beam	
sample	

Small Angle Neutron Scattering

- Commissioning
- New detector and electronics (50x50cm -> 60x60cm)
- New funded projects Steels (PhD Started)
- Development of battery cell ٠
- New software (epics) •
- Reduction software under development •

ŤUDelft

		Phy	sics and Chemist	ry					
			Sma	all Angle Scattering	R				
Atoms	Layered structure		colloids	Aggregates	Cell	Texture	Art	Engi	ne
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10-4	10 ⁻³	10 ⁻²	[m]

Spin Echo Small Angle Neutron Scattering

Structure analysis length-scale 50 nm to 20 µm

incident beam sample

SESANS signal !

Small Angle Neutron Scattering (SESANS)

Structure analysis length-scale 50 nm to 20 µm Spin Echo Small Angle Neutron Scattering

ŤUDelft

			sics and Chemistr	у					
			Sma	all Angle Scattering	R				
Atoms	Layered structure		colloids	Aggregates	Cell	Texture	Art	Eng	jine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	[m]

SESANS example

Structure analysis length-scale 50 nm to 20 µm

						Engineeri	ng	
			Small Angle Scattering Radiography / To					hy
Atoms	Layered structure	Colloids	Aggregates	Cell	Texture	<u>Årt</u>		jine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	[m]

Structure analysis length-scale 50 µm to cm level Radiography and tomography

Neutron Imaging, FISH 2x

Structure analysis length-scale 50 µm to cm level Radiography and tomography

Zhou, Zhou & Plomp, Jeroen & Eijck, Lambert & Vontobel, Peter & Harti, Ralph & Lehmann, Eberhard & Pappas, Catherine. (2018). FISH: A thermal neutron imaging station at HOR Delft. Journal of Archaeological Science: Reports. 20. 369-373. 10.1016/j.jasrep.2018.05.015.

						Engineeri	ng	
			Small Angle Scattering Radiography / To					ohy
Atoms	Layered structure	Colloids	Aggregate	s Cell	Texture	<u>t</u> Art		gine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 1	0 ⁻⁷ 10 ⁻⁶	10 ⁻⁵	10-4	10 ⁻³	10 ⁻²	[m]

Structure analysis length-scale 50 µm to cm level with radiography and tomography

What does the lens look like?

						Engineeri	ng	
Diffraction			Small Angle Scattering				' Tomograp	ohy
Atoms	Layered structure	Colloids	Aggregates	Cell	Texture	<u>Årt</u>	Eng	gine
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	[m]

Structure analysis length-scale 50 µm to cm level Radiography and tomography

• Example: Antoni van Leeuwenhoek (1632 – 1723)

Cocquyt, Tiemen, Zhou Zhou, Jeroen Plomp and Lambert van Eijck. "Neutron tomography of Van Leeuwenhoek's microscopes." Science Advances 7 (2021): n. pag.

Cold Test beam (2x)

Measuring with, monochromatic, polarised beam. Instrument development or student practical. Detector testing (V17 Berlin)

Physics and Chemistry									
Atoms	Layered structure	Colloids	Aggregates	Cell	Texture	Art	Eng	gine	
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	[m]	

Neutron depth profiling

Measuring the concentration of e.g. He, Li, B or N as a function of depth in various substrates. Measuring the absolute amount of isotopes like ³He, ⁶Li, ¹⁰B or ¹⁴N per cm².

Neutron Depth profiling

Gain factor of 20 for cold neutrons

 ${}^{6}\text{Li} + n \rightarrow {}^{4}\text{He} (2055 \text{keV}) + {}^{3}\text{H}(2727 \text{keV})$

⁴He max depth 7μm, resolution 10nm ³H max depth 40μm, resolution 50nm

Neutron Depth profiling

Small compact system developed for thin film battery, can be taken to labspace in glovebox if needed

Positrons: application fields

With Self-Healing properties (aluminium and steel alloys)

> For efficient Hydrogen storage (low weight, high capacity)

For efficient conversion of light into electricity (solar cells)

For fission reactors used as moderator and fuel

..... and more

For fusion reactor walls facing the hot plasma

Of nano-meter scale

Positrons are remarkable probes

Si atom — Covalent bond γ -photon (E_y = 511 km

γ-photon ($E_{\gamma} = 511 \text{ keV} + \Delta E$) γ-photon ($E_{\gamma} = 511 \text{ keV} - \Delta E$)

Thin Film studies,10 nm – 2 µm thickness

Low energy positrons: e⁺ beams

Solar cell

average depth 250 nm

Isotopes treatment

UMC Utrecht

REACTOR INSTITUTE DELFT

Tc-99m in a tumor-seeking compound as tracer

Higher activity possible by Pb shielding and lower level of • radiation damage

*f***U**Delft

Instrumental Neutron Activation Analysis (INAA)

TUDelft

INAA

Change of the gamma-ray spectrum due to decay of radionuclides

Measured 30 s after irradiation

- The shape of the spectrum changes with time...
- Consecutive measurements provide complementary information

Measured 1 month after irradiation

REACTOR

INSTITUTE

Protons, therapy and research

Laboratory facilities:

- 150 m² research bunker with R&D proton beam line (clinical grade)
- 70 m² laboratory space for technology development
- 30 m² laboratory space for radiochemical research
- 30 m² biological laboratory space

Any questions?

