Alpha radionuclide therapy

(Radiation Science and Technology, TU Delft)

KIVI Symposium, 19 March 2021 Antonia Denkova

HIIIIII

1

Radionuclide therapy

- Systemic therapy uses radionuclides for the treatment of metastases
- Beta (β) minus emitting radionuclides most often used
- Auger electrons deposit their energy very locally but have very limited range
- Alpha (α) radiation is better in diminishing side effects due to short range. They produce 100 times larger adsorbed dose beta particles (3-6 tracks are enough)

Targeting approaches

targeting agent

- Active targeting: e.g. antibodies, peptides etc
- Natural targeting, natural affinity of the radionuclides for tissues e.g. 223 Ra and bone

A bit of history - ²²⁴Ra-chloride

1948 – 1975: Used for the treatment of Ankylosing Spondylitis patients (Bekhterev's disease)

Spine with Normal spine ankylosing spondylitis Vertebra Disk Nerve Syndesmophytes (fusion of vertebrae) TUDelft

Patient response rates after treatment with ²²⁴Ra-chloride and after conventional treatment with antiphlogistics (controls)

²²⁴Ra naturally targets bones

Ra-chloride - problems

²²⁴Ra-chloride - problems

- Main reasons:
	- $-$ short half-life ²²⁴Ra (3.6 d)
	- relatively long half-life 220 Rn (55 s)
- Study in beagles:
	- -8% ²²⁰Rn left body
	- ²¹²Pb and ²¹²Bi in red blood cells
	- ²¹²Bi in kidneys
	- 212Pb in liver

TUDelft

The comeback of alpha radionuclide therapy

Available alpha radionuclides

 $\widetilde{\mathbf{T}}$ UDelft

8

Recoil effects – ²²⁵Ac

9

Distribution of recoiled atoms

Distribution in body depending on:

Distribution of recoiled atoms

Major targeted organs after intravenous injection of ²²⁵Ac

Solving the recoil problem

Alpha emitters with longer half-lives more suitable for therapy…but then how do we solve the recoil problem?

- 1. Natural targeting
- 2. Fast targeting
- 3. Local administration
- 4. Encapsulation in nanocarriers

Natural targeting- Xofigo

 223 RaCl₃ for men with prostrate cancer with:

- 1. castration-resistant prostrate cancer
- 2. symptomatic bone metastases
- 3. no known viceral metastatic disease

Natural targeting - Xofigo

- According to the de European Medicines Agency Xofigo should be offered as last option if other treatments not possible. Never in combinations with Zytiga of comparable medicines
- Scientific results on the other side suggest that early application in the early stages more favourable for outcome
- Xofigo should not be given to decrease side effects but to increase life expectancy

Fast targeting - ²²⁵Ac PSMA

- The small ligand: Prostate Specific Membrane Antigen (PSMA) ligand has very fast tumour accumulation and clearance through the kidney
- Appeared to be extremely successful in treatment of metastatic prostate cancer
- Adverse effects not entirely known yet, uptake in the salivary glands is a problem

Molecular structure of PSMA-617 ligand

Fast targeting - ²²⁵Ac PSMA

- Two important studies: Pretoria and Heidelberg
- 90% decrease in serum PSA (marker for prostate cancer) in 82% of the patients, 41% of the patients had undetectable PSA serum values (Pretoria)
- Eight of the eleven patients had > 50% PSA response (Heidelberg)

Complete remission of patient with many metastases after a few cycles with 225Ac-PSMA

Local administration

Diffusing alpha-emitters Radiation Therapy (DaRT) with ²²⁴Ra wires ²²⁴Ra stays in wire, daughters diffuse Clinical trials: squamous cell carcinoma

Encapsulation in nano-carriers

Carriers with nano-dimensions (from 1 to 1000 nm) in which the active substance is incorporated on the surface or inside the carrier and can be transported to the intended location

Designing the best nano-carrier

Physics models:

- Heavy ion stopping power
- Decay model
- **FUDelft**

Different vesicle designs

Polymeric nano-carriers

- Size: 100 to 800 nm in diameter
- Membrane thickness 7 nm

TUDelft

DLS data showing the size of the vesicles

Loading of radionuclides

Active loading methodology:

Encapsulation in polymer nano-carriers

Encapsulating ²²⁵Ac in de core and determining retention of ²²¹Fr en ²¹³Bi for two cases

(for 100 nm (DTPA): ²¹³Bi: 22%, ²²¹Fr: 37%)

TUDelft

Cryo-EM of 100 nm polymer nano-carriers

Cryo-EM of InPO⁴ nano-particles in polymer nano-carriers

In vivo experiments

- Healthy naked mice
- Size nano-carriers 80 nm
- Intravenous injection
	- ¹¹¹ln: 20 MBq per mouse - ²²⁵Ac: 60 kBq per mouse

In vivo circulation time and biodistribution

25

²¹³Bi retention in nano-carriers *in vivo*

- Short $t_{1/2}$: ²²¹Fr difficult to measure
- Free ²¹³Bi

 \widetilde{T} UDelft

- in blood goes to the kidneys
- in spleen beter retention

Conclusions

- Alpha radionuclide therapy is very efficient in tumour cell killing
- The most appropriate application depends on the tumour type
- Long circulation in blood will be problematic and a big challenge for the use of antibodies

Thank you

Interactions - Stopping power

Total linear stopping power

$$
S = -\frac{dE}{dl} \qquad \text{J m}^{-1}
$$

Stopping in matter

Electronic stopping: inelastic collisions between bound ions in the medium and the ion moving through

Nuclear stopping: elastic collisions between the atoms in the medium and the ion moving through

²²⁵Ac and others in vivo generators

²²⁵Ac – 4 α, 3 β (t_{1/2}=10.0 d) ²¹²Pb – 2 α, 3 β (t_{1/2}=10.6 h) 230 U – 5 α (t_{1/2}=20.8 d)

Alpha radionuclide therapy: recoil ranges

Monte Carlo Simulations

