

Radionuclide therapy

 Systemic therapy uses radionuclides for the treatment of metastases

- Beta (β) minus emitting radionuclides most often used
- Auger electrons deposit their energy very locally but have very limited range
- Alpha (α) radiation is better in diminishing side effects due to short range. They produce 100 times larger adsorbed dose beta particles (3-6 tracks are enough)

Targeting approaches

- Active targeting: e.g. antibodies, peptides etc
- Natural targeting, natural affinity of the radionuclides for tissues e.g.
 ²²³Ra and bone

targeting agent

A bit of history - ²²⁴Ra-chloride

1948 – 1975: Used for the treatment of Ankylosing Spondylitis patients (Bekhterev's disease)

²²⁴Ra naturally targets bones

Number of ²²⁴ Ra treatment cases		Number of control cases	
Improved	Total	Improved	Total
12	15	9	15
17	18	_	_
219	240	_	_
86	92	_	_
75	91	_	_
290	297	44	73
62	78	14	70
14	16	_	_
44	53	_	_
54	60	_	_
22	26	5	20
895	986	72	178
91%		40%	

Patient response rates after treatment with ²²⁴Ra-chloride and after conventional treatment with antiphlogistics (controls)

²²⁴Ra-chloride - problems

²²⁴Ra-chloride - problems

- Main reasons:
 - short half-life ²²⁴Ra (3.6 d)
 - relatively long half-life ²²⁰Rn (55 s)
- Study in beagles:
 - 8% ²²⁰Rn left body
 - 212Pb and 212Bi in red blood cells
 - 212Bi in kidneys
 - 212Pb in liver

The comeback of alpha radionuclide therapy

Available alpha radionuclides

Nuclide	Half-life	Availability	Use
¹⁴⁹ Tb Terbium	4.15 h (17 %)	Ta (p,spall) ISOLDE- Cern only Limited availability	Only few studies Burkitt Lymphoma cells
²¹¹ At Astatine	7.21 h	²⁰⁹ Bi (α,2n) ²¹¹ At Poor availability	Clinical phase I Leukamia, Brain
²¹² Bi Bismuth	60 m	Ra-Bi/Pb generator	Preclinical phase
²¹³ Bi Bismuth	45.6 m	²²⁵ Ac generator Several elutions a day	Clinical phase I Ovary, Breast, Prostate, Stomach
²²³ Ra Radium	11.4 d	²²⁷ Th decay	Clinical phase II
²²⁴ Ra Radium	3.66 d	²³² Th decay	Radium chloride for Morbus Bechterew
²²⁵ Ac Actinium	10 d 4 α-particles	²²⁶ Ra(p,2n) ²²⁵ Ac Complicated chelating	Clinical phase I Prostate
²²⁷ Th Thorium	18.7 d	²²⁶ Ra neutron irridation Natural radiation	Preclinical phase Rituximab
²³⁰ U Uranium	20.8 d		0

Recoil effects – ²²⁵Ac

Typical energies of chemical bonds: 1-6 eV

²²¹Fr - 105 keV

²¹⁷At - 119 keV

²¹³Bi - 135 keV

²⁰⁹Pb - 160 keV

Distribution of recoiled atoms

Distribution in body depending on:

Mechanism	Where
recoil (~100 nm)	break chemical bond, escape carrier
diffusion	intra- / extra-cellular matrix, organs and tumours
active transport (convection)	blood flow

Distribution of recoiled atoms

Major targeted organs after intravenous injection of ²²⁵Ac

Element	Major targeted organs
Francium	primarily kidneys
Bismuth	35% urine, 35% kidney, 7% gastrointestinal, 5% liver from plasma
Lead	55% blood, 15% liver, 10-15% skeleton 1d after iv
Polonium	28% liver, 28% kidneys, 10% red bone marrow, 5% spleen

Solving the recoil problem

Alpha emitters with longer half-lives more suitable for therapy...but then how do we solve the recoil problem?

- 1. Natural targeting
- 2. Fast targeting
- 3. Local administration
- 4. Encapsulation in nanocarriers

Natural targeting- Xofigo

²²³RaCl₃ for men with prostrate cancer with:

- castration-resistant prostrate cancer
- symptomatic bone metastases
- 3. no known viceral metastatic disease

Natural targeting - Xofigo

- According to the de European Medicines Agency Xofigo should be offered as last option if other treatments not possible. Never in combinations with Zytiga of comparable medicines
- Scientific results on the other side suggest that early application in the early stages more favourable for outcome
- Xofigo should not be given to decrease side effects but to increase life expectancy

Fast targeting – ²²⁵Ac PSMA

- The small ligand: Prostate Specific Membrane Antigen (PSMA) ligand has very fast tumour accumulation and clearance through the kidney
- Appeared to be extremely successful in treatment of metastatic prostate cancer
- Adverse effects not entirely known yet, uptake in the salivary glands is a problem

Molecular structure of PSMA-617 ligand

Fast targeting – ²²⁵Ac PSMA

- Two important studies: Pretoria and Heidelberg
- 90% decrease in serum PSA (marker for prostate cancer) in 82% of the patients,
 41% of the patients had undetectable PSA serum values (Pretoria)
- Eight of the eleven patients had > 50% PSA response (Heidelberg)

Local administration

Diffusing alpha-emitters Radiation Therapy (DaRT) with ²²⁴Ra wires ²²⁴Ra stays in wire, daughters diffuse Clinical trials: squamous cell carcinoma

Encapsulation in nano-carriers

Carriers with nano-dimensions (from 1 to 1000 nm) in which the active substance is incorporated on the surface or inside the carrier and can be transported to the intended location

Designing the best nano-carrier

Physics models:

- Heavy ion stopping power
- Decay model
- Diffusion model

 TUDelft

Different vesicle designs

Polymeric nano-carriers

- Composed of poly(butadiene-bpolyethylene oxide) (PB-b-PEO)
- Size: 100 to 800 nm in diameter
- Membrane thickness 7 nm

DLS data showing the size of the vesicles

Loading of radionuclides

Active loading methodology:

Hydrophilic chelator

Hydrophilic chelator

DTPA

Lipophilic ligand

calcium ionophore A23187

Encapsulation in polymer nano-carriers

Encapsulating ²²⁵Ac in de core and determining retention of ²²¹Fr en ²¹³Bi for two cases

	Retention	
Size (nm)	²¹³ Bi	²²¹ Fr
100	40 ± 2%	57 ± 5%
200	38 ± 5%	68 ± 1%
400	43 ± 7%	75 ± 13%
800	56 ± 5%	96 ± 3%

(for 100 nm (DTPA): ²¹³Bi: 22%, ²²¹Fr: 37%)

Cryo-EM of 100 nm polymer nano-carriers

Cryo-EM of InPO₄ nano-particles in polymer nano-carriers

In vivo experiments

- Healthy naked mice
- Size nano-carriers 80 nm
- Intravenous injection

- ¹¹¹In: 20 MBq per mouse

- ²²⁵Ac: 60 kBq per mouse

In vivo circulation time and biodistribution

²¹³Bi retention in nano-carriers in vivo

- Short $t_{1/2}$: ²²¹Fr difficult to measure
- Free ²¹³Bi
 - in blood goes to the kidneys
 - in spleen beter retention

Organ	DTPA	InPO ₄
Blood	0.06 ± 0.03	0.14 ± 0.07
Spleen	0.67 ± 0.02	0.80 ± 0.06
Kidney	7.75 ± 0.63	7.03 ± 2.04

Conclusions

- Alpha radionuclide therapy is very efficient in tumour cell killing
- The most appropriate application depends on the tumour type
- Long circulation in blood will be problematic and a big challenge for the use of antibodies

Thank you

Interactions - Stopping power

Total linear stopping power

$$S = -\frac{dE}{dl}$$
 J m⁻¹

Stopping in matter

Electronic stopping: inelastic collisions between bound ions in the medium and the ion moving through

Nuclear stopping: elastic collisions between the atoms in the medium and the ion moving through

²²⁵Ac and others in vivo generators

225
Ac $- 4 α$, 3 β ($t_{1/2}$ =10.0 d)
 212 Pb $- 2 α$, 3 β ($t_{1/2}$ =10.6 h)
 230 U $- 5 α$ ($t_{1/2}$ =20.8 d)

Alpha radionuclide therapy: recoil ranges

Monte Carlo Simulations

