EXPLORING THE DARK

Pierre Boyde, Commercial and Business Development Director of **DEEPOCEAN**

presents

Development Of The World's Most Advanced Trenching System: RT-1

14 March 2013

Brief Company Overview

RT-1 Development History and Design

RT-1 Overview

Experience 2009-2010

- North Sea Trials
- Piggyback Pipe Trenching off Irish Coast

• North West Shelf Trials

RT-1 Look Ahead

Key Company Statistics

Corporate Information:

Group Head Office: Amsterdam In business since early 1990's Number of employees: ~1,000

Fleet Details:

Owned vessels: 7 Chartered vessels: 9

Subsea or Mission Equipment:

Trenchers & Ploughs: 17 Remotely Operated Vehicles: 22 Mattress Installation Lifting Frame: 1 Module Handling System: 1

Company Overview

Installation: installation of components in subsea oil & Gas fields and wind farms

Seabed Intervention: use of trenchers and ploughs to excavate soil, mud or rock areas for subsea field development

Inspection, Maintenance & Repair: recurring activities to support the operability of subsea infrastructure

Survey & Seabed Mapping: use of observation-class ROVs to visually survey, inspect and map terrain prior to the installation of new subsea production systems (wells, pipelines, templates) and to assess pipeline conditions

Decommissioning: the removal of infrastructure at the end of a subsea field's life

RT-1 Development History & Design

DeepOcean identified: 'there was an industry need for cost-effective tool to stabilise planned natural gas trunklines **endoflothim** Australian North West Shelf'

In 2006 DeepOcean committed to build RT-1.

Detailed Design and Build carried out by Soil Machine Dynamics

The RT-1 concept was developed after:

- Extensive review of available NWShelf Geotechnical data
- A series of design reviews
- 40% scale model trials

Operating Depth MaximumTrench Depth Trench Profile Dimensions LxWxH Weight in Air

Pipe Handling

Buoyancy Pipe Size Power 500msw

2m – current configuration

45 degree wall 'V' trench

22.5x13x9.6m

140-200mt, depending on configuration

2 triple roller cradle assemblies, 65mt lift each

up to 100mt

1.5m overall outside diameter 2,300kW :

- 1,050kW to cutter assemblies;
- 320kW to dredge pumps;
- 700kW to jetting pumps

Operational History

August 2009 – Full Scale Trials – North Sea

October 2009 – 11.5k Priggyback Pipe Trenching – Ireland

March 2010 – Full Scale Trials – North West Shelf, Australia

8th – 16th August 2009 off Coast of Northumberland

Geotechnical –

- Flat featureless seabed identified as being composeds of sa over soft silts or fine sands.
- No trials specific data, soils data (e.g. VC/CPT) **codeciteg** the trials phase.

Performance –

- Trench slope angles ranged between 30-38°, allowingsprogr rates of up to 350m/h, whilst still retaining a good .gench (1 2.0m) depth. (200% faster and than could be achieved with ploughing technique in these soil conditions and 70% less fuel burn)
- In sands, vehicle forward speeds limited not by vehicle pow or cutter performance, but by the capacity of the dredgespump to clear an open trench.

Full Scale Trials – North Sea

MBES Data 'Screen Grab' – Start Transition In

Full Scale Trials – North Sea

MBES Data 'Screen Grab' – Cutter 1 & 2 100% - Trench Depth 1.9m

Full Scale Trials – North Sea

MBES Data 'Screen Grab' – Fully Graded in – Trench Depth 2.0m

MBES Data 'Screen Grab' – Start of Grade out – Trench Depth 1.6m

Trenching Contract - Ireland

October 2009 – Trenching

SOW– Approx 11.5kntrenching 20" / 10" piggyback pipe – DOL 0.6m

Geotechnical –

- Mediumbense to very dense fine to media ands
- Rock out crop

Performance –

- Trench slope angles as low as 20°
- Reduced forward speed to <100m/h trenching, driveby aft dredge pumps performance to excavate fine sands

Survey Data 'Screen Grab' – Typical Trench Profile

March 2010 – Trenching

OBJECTIVE:

- Assess RT-1 performance in the "worst case" soil types pres at trial site;
- Provide data for the creation of a model for assessing RT-1 future performance on other projects across the NW Australian Shelf;

• Monitor the environmental impact upon the marine erevitonm of RT-1 trenching operations in terms of noise and turbidity

Geotechnical – 4 Trench Trials conducted:

Trench 1:

Intermittent veneer of ow velocity (<1,600m/s) unconsolidated sediments less than 1m thick overlying high velocity (1,900-3,000m/s) weak to well cemented sediments.

Trench 2:

Veneer (less than 1m thick) of non to weakly cemented sediments (<2,100m/s) overlying moderately cemented sediments (2,5000m/s). Three cores showing weak to strong cemented material at surfative & wi the trench depth at all three locations.

Trench 3:

Unconsolidated sediments (v <1,750m/sec) up to 6m thick overlying cemented sediments (,1750-3,000m/sec). Two cores indicate loose to medium dense sand over moderately strong to strong cemented material.

Trench 4:

Seismic velocities indicate veneer of low velocity material (<1,900m/sec) overlying high velocity material (2,100-4,000m/sec). One core indicating weak to moderately strong sandstone throughout the trench depth.

Trenching Trial – North West Shelf

Performance:

An attempt has been made to correlate the available seisfraiction data with the seabed as described in the cores.

Table below is an attempt to correlate seismic velocityerformance

Indicative Seismic Velocities (m/sec)	Trench No.	Dive No.	Progress Rates (m/h)	Trench Depth (m)	Seabed Type
<1,750 (low)	3	8	110 - 230	2.0	Sands
1,750 – 2,500 (medium)	1	1 & 2	60- 100	2.0	Weak to moderate weak cemented material
	2	12 & 13			
	4	9			
2,500 – 3,500 (medium-high)	2	14 & 15	10 - 50	0.5 - 2.0	Moderately strong cemented material
	4	10			
3,500 – 4,000 (high)	4	11	Trenching not possible with current configuration	0.0	Sandstone
3,500 – 4,000 (high)	4		current configuration	0.0	Sandstone

North West Shelf results: fly-through video

Conclusions:

- In material with a low seismic velocity (< 1,750m/sas2mds) trench depth was achieved (114m/h, driven by environmental monitoring restrictions).
- In material with a medium seismic velocity (1,750-2,500m/s, moderately weak cemented) a 2m trench depth was achieved (60-100m/h).
- In material with a high seismic velocity (10-15%fohe route, >2,500m/s, moderately strong cemented) RT1 was not always able to create a 2m trench depth (13-28m/h). However along Trial Trench #2 a 2m trench was achieved in materials with a seismic velocity up to 3,500m/s.
- An 'ultra' hard ground cutting system has now beendesigned that would be able to cut systematically in materials of high seismic velocity (up to 3,500 m/s)

NEW RT-1 permanent home: Havila Phoenix

Havila Phoenix - Operational Q1 2014

Havila Phoenix

Multi-Role Flex Lay, Trenching, Construction Support

DPII

LOA x Breadth 125m x 23m (Vessel will be lengthened by 15m in winter 2013)

140 POB

2000te Carousel ; up to 4000 Te deck load.

250te and 20te AHC Subsea Cranes

250te AHC A-Frame

Industry Leading RT1 & Q1000 Trenching Spread

NEW RT-1 Pipeline Jetting Mode

NEW Deep Cable Trenching Mode - jetting

NEW Deep Cable Trenching Mode - cutting

Any questions?

Thank you