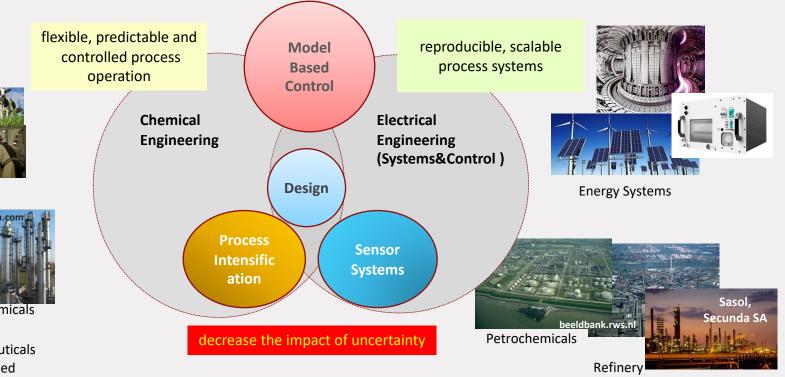


Revolutionizing Process Control: Innovations and Future Trends in Model Predictive Control

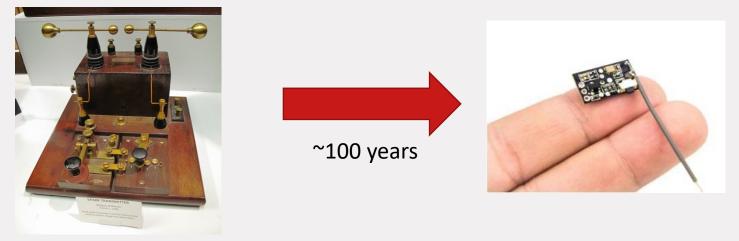
Control Systems Group, Electrical Engineering Department

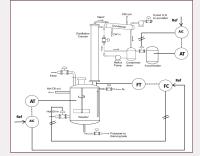
Leyla Özkan

EE-Control Systems Group


TU/e

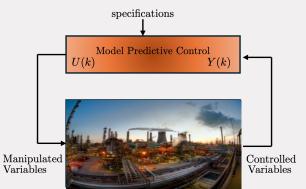
What Does SPROC Do?

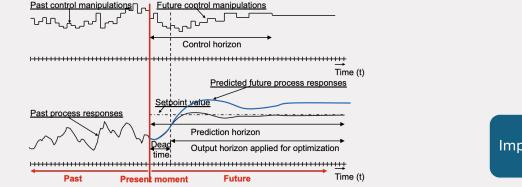




Control Challenges in Process Systems

Fundamentally many chemical engineering processes have changed little from the dye industry of the 1900's, Prof. Kevin Roberts, University of Leeds

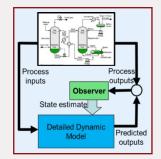



An example: Control of a Reactive Batch Distillation Column[7]



Model Predictive Control-An Introduction

- Mutlivariable control strategy
- Accepted technology in petrochemicals
- Process Constraints are explicitly addressed



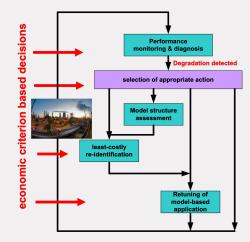
Model Predictive Control-Current Situation

Observations:

- Model-based applications have a high potential for operation both on-line as well as off-line.
- Online use of models is still limited.

Why this contradiction?

- Total Cost of ownership is significant (TCoO)
- Complexity and expertise required
- Lifetime performance is limited due to lack of (automated) maintenance



Autoprofit

Advanced Autonomous Model-Based Operation of Industrial Process Systems

Goal of the project:

Improved lifetime performance of model-based applications by autonomous costefficient maintenance and Reduce total cost of Ownership of the system

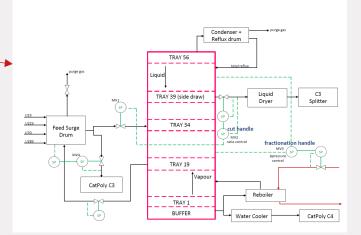
Autonomous maintenance for linear model-based operation

Developments focused on:

- Performance Diagnostics
- Autonomous testing:
- Autonomous MPC tuning:
- Extension to non-linear systems

Extensive testing under practical circumstances

Autoprofit Test Case:

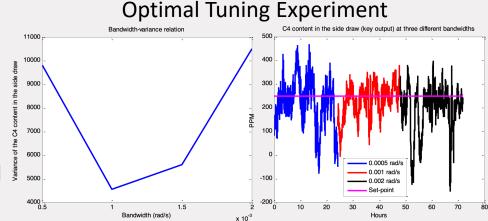

Fischer Tropsch Depropaniser plant at Sasol, SA

<u>Objective</u>: Maximize the side-draw product (C_3s) while maintaining the quality (no impurities

such as C₄s)

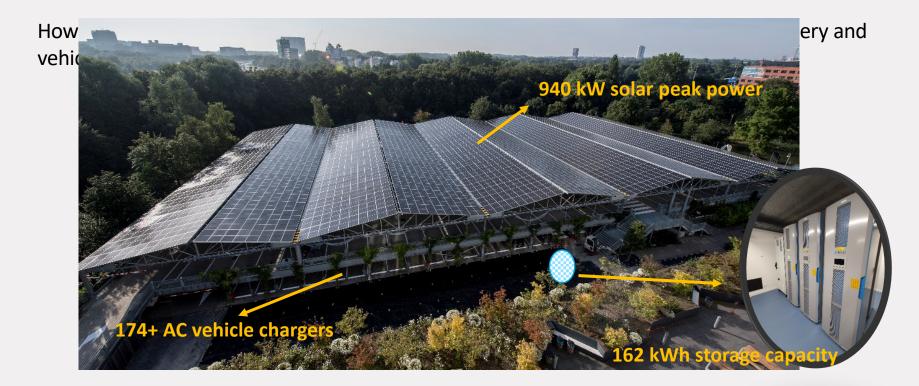
Primary MVs	Primary CVs
Feed-to-Side draw ratio	Side draw composition
Delta-pressure	Column bottom's temperature

total reflux 56-tray tower with a side draw section above tray 38.


TU/e

Autoprofit Test Case Campaign

Performed experiments:


- 1. Initial open loop identification
- 2. MPC implemented
- 3. Performance drop introduced
- 4. Re-identification and detuning tested

Final Evaluation : Excellent

TU/e

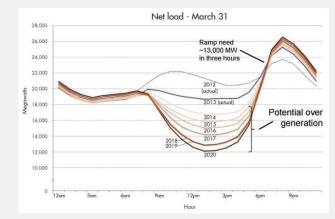
MPC of EV Charging Stations in Grid Connected Microgrid

MPC of Ev Charging Stations in Grid Connected Microgrid

Problem: Mismatch renewable power supply and power demand

Supply

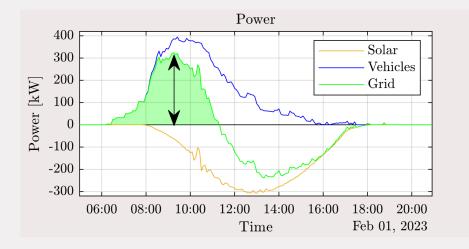
Legend No capacity

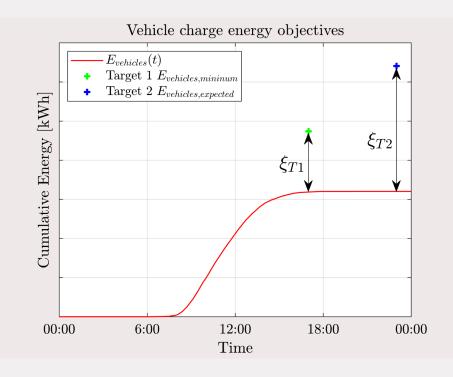

No capacity until congestion management applied

Limited capacity

*Capacity for expansion with a 3x80 [A] connection or larger

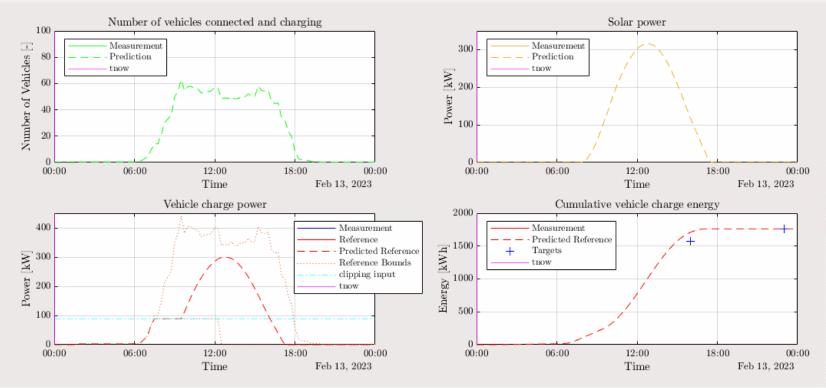
Source: Netbeheer Nederaland 17-03-2023 [6]

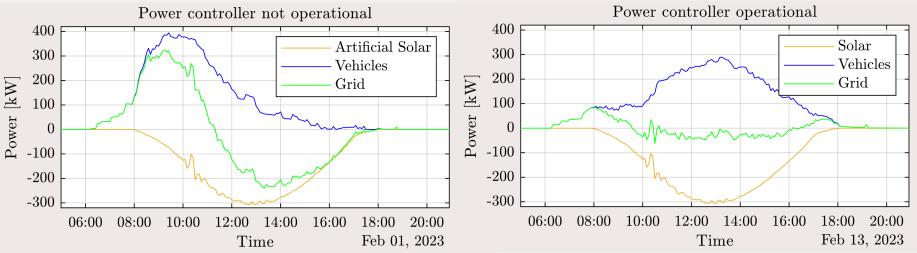

Consumption



Source: California ISO

MPC Objective


- 1. Maximize self sufficiency
- 2. Minimize peaks
- 3. Minimize deviation energy targets: ξ_{T1} , ξ_{T2}



Results single day

Results single day: Comparison [2/2]

	01-02-2023: not operational	13-02-2023: operational	Difference
Self sufficiency	47.8 %	88.2 %	+40.4 %
Peak power	324 kW	85 kW	-74 %
Charge energy	23.1	21.1	-8.6%

The Next Industrial Revolution

- Industry 4.0 / Digitization
 - Smart use of Data /Sensors/Prior Knowledge
 - Data and product flows across company borders
 - Fully automated, continuously monitored for control, optimization
- Electrification / Circularity/Green Transition of Process Industry
 - New chemistry, new energy source, new feedstock
 - Tightly integrated physical network
 - Dynamics becomes important
- Integration of the (process) industrial operations in the (electric) power grid
 - Use of available flexibility for balancing and congestion mitigation
 - Connection to the heat network

Future Directions

Data Driven Control ٠

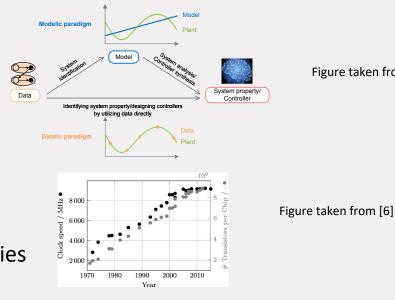


Figure taken from [5]

- Large Scale Optimization •
 - **Computation** load •
 - Uncertain uncertainities ٠
- Human-Automation Interaction ٠
 - Technology should speak a natural language to the operator •

Final Remarks

- Model Predictive Control will be even more popular due to
 - Flexibility in its formulation
 - Ability to contribute to efficiency of system
- Wider usability of the technology in process industry is needed.
 - Reducing the complexity of the modeling and tuning

We all think of tomorrow but there is also the day after tomorrow.

Acknowledgments:

Autoprofit:

Jobert Ludlage

Paul Van den Hof

Quang Tran

Joris Meijs

Ryvo Octaviano

EV Charging

Jobert Ludlage

Bram Hermans

Shalika Walker (Kropman)

References:

- 1. Ozkan, L.; Bombois, X.J.A.; Ludlage, J.H.A. et al. / Advanced autonomous model-based operation of industrial process systems (Autoprofit) : technological developments and future perspectives. In: Annual Reviews in Control. 2016; Vol. 42. pp. 126-142.
- 2. Hermans, Bram ; Walker, Shalika S.W. ; Ludlage, Jobert H.A. et al. / Model Predictive Control of Vehicle Charging Stations in Grid-Connected Microgrids : An Implementation Study. In: Applied Energy. 2024 ; Vol. 368.
- Guidi, H.; Larsson, C.A.; Tran, Q.N. et al. / Autonomous maintenance of advanced process control : application to an industrial depropanizer. Fuels and Petrochemicals Division 2014 - Core Programming Area at the 2014 AIChE Spring Meeting and 10th Global Congress on Process Safety. Vol. 2 American Institute of Chemical Engineers (AIChE), 2014. pp. 923-932
- 4. Tran, Nhat ; Scholten, J. ; Ozkan, Leyla et al. / A model-free approach for auto-tuning of model predictive control. In: IFAC Proceedings Volumes. 2014 ; Vol. 47, No. 3. pp. 2189-2194.
- 5. Yujie Yang; Letian Tao; Likun Wang et al., Controllability Test for Nonlinear Datatic Systems, arxiv.org/abs/2405.09317, 2024
- 6. Max Schwenzer; Muzaffer Ay; Thomas Bergs et.al. **Review on model predictive control: an engineering perspective,** The Int. Journal of Adv. Manufacturing, 2021; Vol: 117
- Marquez Ruiz, Alejandro ; Loonen, M.A.C. ; Saltik, Bahadir et al. / Model learning predictive control for batch processes: A Reactive Batch Distillation Column Case Study. In: Industrial and Engineering Chemistry Research. 2019 ; Vol. 58, No. 30. pp. 13737-13749.