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What Does SPROC Do?

flexible, predictable and

Model reproducible, scalable
controlled process

: Based process systems
operation
Control
Chemical : Electrical
Engineering / “'-.‘ Engineering

(Systems&Control )

Sensor
Systems

Sasol,
Secunda SA
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Petrochemicals

decrease the impact of uncertainty

Pharmaceuticals
Bio based




Control Challenges in Process Systems

~100 years

Fundamentally many chemical engineering processes have changed little from the dye industry of the 1900’s,
Prof. Kevin Roberts, University of Leeds

An example: Control of a Reactive Batch
Distillation Column[7]
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Model Predictive Control-An Introduction

Mutlivariable control strategy

Accepted technology in petrochemicals
Process Constraints are explicitly addressed

Past control mani?lulatioggrl
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Model Predictive Control-Current Situation

Observations:

* Model-based applications have a high potential
for operation both on-line as well as off-line.

* Online use of models is still limited.

Why this contradiction?

0Hs

* Total Cost of ownership is significant (TCoO) <
* Complexity and expertise required 8
* Lifetime performance is limited due to lack of §
(automated) maintenance %

~
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Autoprofit

Advanced Autonomous Model-Based Operation of Industrial ~CBopsRToN
Process Systems TU/e &8
Goal of the project: 1("U Delft

Improved lifetime performance of model-based applications by autonomous cost-
efficient maintenance and Reduce total cost of Ownership of the system

Developments focused on:
ABB e
g * Performance Diagnostics BOLIDEN
— _» ‘ selection of appropriate action | . p
* Autonomous testing: saso. 4%

W \ * Autonomous MPC tuning:

— re!f;:r::l'l):at:{on
I ]_. * Extension to non-linear systems

¥ Extensive testing under practical circumstances

economic criterion based decisions

Autonomous maintenance for linear
model-based operation
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Autoprofit Test Case:

Fischer Tropsch Depropaniser plant at Sasol, SA total reflux 56-tray tower with a
side draw section above tray 38.

TRAY 56

Objective: Maximize the side-draw product (C;s) NN '
while maintaining the quality (no impurities [T ]
SUCh as C4S) Primary MVs Primary CVs i_& ::::;f;}:::;{:::: e coner |——— _caraya
Feed-to-Side draw Side draw composition
ratio
Delta-pressure Column bottom’s
temperature
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Autoprofit Test Case Campaign

Performed experiments: _ . _
Optimal Tuning Experiment

Bandwidth-variance relation C4 content in the side draw (key output) at three different bandwidths
11000 - = - .~ 500 X §

1. Initial open loop identification [
2. MPCimplemented
3. Performance drop introduced 5
4. Re-identification and detuning tested | o ) —
“o0g'e o TS mj 6w w W 5w ®

Final Evaluation : Excellent
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MPC of EV Charging Stations in Grid Connected Microgrid

How . ery and
vehig i T ———_——

940 kW solar peak-power.

\)162 kWh s (. ?paCity
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MPC of Ev Charging Stations in Grid Connected Microgrid

Problem: Mismatch renewable power supply and power demand
Consumption '

Legend
M No capacity
[l No capacity until i applied

Limited capacity
*Capacity for expansion with a 3x80 [A]
connection or larger

Source: Netbeheer Nederaland 17-03-2023 (6]
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MPC Objective

1. Maximize self sufficiency Vehicle charge energy objectives
. . . —_— vehicles(t)
2. Mlnlmlze peaks L TargEt 1 Evehicles,mininum i
QR Q Q Q — T t 2 Eve icles,expecte
3. Minimize deviation energy targets: 74, &1 £ OB S Cuchiden capected
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Time:
00:00

Results single day

Number of vehicles connected and charging
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Power [kW]

400
300
200
100

-100
-200
-300

Results single day: Comparison [2/2]

Power controller not operational

Artificial Solar
Vehicles
Grid

1 1 1 1 1 1 1 1

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time Feb 01, 2023

Power controller operational

Solar
Vehicles
Grid

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time Feb 13, 2023

Self sufficiency 47.8 %

Peak power 324 kW

Charge energy 23.1
14

88.2 %

85 kW

21.1

+40.4 %
-74 %

-8.6%
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The Next Industrial Revolution

* Industry 4.0 / Digitization P
* Smart use of Data /Sensors/Prior Knowledge g f“. T 4
* Data and product flows across company borders | P B TE

* Fully automated, continuously monitored for control, optimization

* Electrification / Circularity/Green Transition of Process Industry
* New chemistry, new energy source, new feedstock
e Tightly integrated physical network /
e Dynamics becomes important

* Integration of the (process) industrial operations in the (electric) power grid
* Use of available flexibility for balancing and congestion mitigation
e Connection to the heat network

s TU/e



Future Directions

e Data Driven Control

Figure taken from [5]

\\\\ s
yd ™\ [ System property/
Controller

system ignit
by utilizing data directly

. . . i 0‘
* Large Scale Optimization 2 ool LA e ke from 6
2 < 6 0,00 6 & Igure taken from
* Computation load AR
* Uncertain uncertainities < ... °

|
1970 1980 1990 2000 2010
Year

* Human-Automation Interaction
» Technology should speak a natural language to the operator

TU/e
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Final Remarks

 Model Predictive Control will be even more popular due to

e Flexibility in its formulation
* Ability to contribute to efficiency of system

* Wider usability of the technology in process industry is
needed.
* Reducing the complexity of the modeling and tuning

We all think of tomorrow but there is also the day after tomorrow.
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