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O The role of computational analysis in sustainable design
Challenges & uncertainties:
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Outline

USustainable development
“meeting the needs of the present without compromising
the ability of future generations to meet their own needs”
(United Nations Brundtland Commission, 1987)

U Setting the scene in the context of Civil / Geotechnical Engineering
economy improving design efficiency / reducing over-conservatism
environment protecting resources / reusing / reducing carbon emissions

society protecting lives and improving wellbeing

Outline

U Existing UK experience: example
» Serviceability design & predictions of ground movements

site conditions
« geology

« layering, inhomogeneity,
multi-phase

« initial stresses, ground
water, geological history

soil behaviour
* in-situ testing

« sampling, sample disturbance,
laboratory testing

« interpretation and derivation of

parameters for design and for
constitutive modelling

available tools:

established numerical methods

« Finite Element (FE)
« Finite Difference (FD)

« Boundary Element (BE) ?

 Random Field FE ?

analysis
« any method of analysis
idealises this input through
mathematical forms and
numerical algorithms to aid
geotechnical design

emerging numerical methods

« Data Science / Machine Learning

—

o Bayesian Inference (BI)
o Neural Networks (NN)

UK 1980's industry lead on soils’ small strain modelling:
= new active underground construction
= the need to reduce an unnecessary protection measures

for the prevention of building damage

= Simpson et al. (1978) !

o BRICK model in Safe |
= Potts et al. (1986) |
o nonlinear elastic models in ICFEP |

Shear stiffness, G

= Benz (2007)
o nonlinear elastic hysteretic model in PLAXIS

Typical strain ranges

le- 4e—>{Retaining walls
|4~ 4¢—>| Foundations
- - 4¢—>| Tunnels

1 1 1 1
0.0001 0.001 0.01 0.1 1 10
Shear strain (%)
Dynamic methods — BE, RC
—
Local gauges

k- de———————— -
Conventional soil testing
P

experimental evidence
after Atkinson & Sallfors, 1991
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Outline @ Outline

U Existing UK experience: example O Complexities of geotechnical design are increasing
» Serviceability design & predictions of ground movements

lifecycle assessment

Higgins et al. (1994)

i

i

1 1 Excavation level } o Typical strain ranges

) 93m H g le-4¢—>1Retaining walls
L i
“ ! é |4~ 4¢—| Foundations coz
Egof B - - 4e—>{Tunnels
Palace of 5 & U ——
Westminster B o
g ¥ A
- i I | | 1 1 ] P
0 I ; m:: ' 0.0001 0001 001 01 1 10 reduction in carbon
¥ = Predi .
g i Shear strain (%) O Example applications: emissions ¢
40 0 10 20 30 40 0| 1 Dynamic methods — BE, RC > Aenergy transition: offshore wind energy transition
Walldisplacement (mm) : > B reuse of existing infrastructure
. Me-——te—localgauges . » C nature-based design and lifecycle assessment
Westminster station Wall movements i Conventional soil testing » D radioactive waste disposal
—
i
Example: Jubilee Line Extension tunnels experimental evidence . .
after Atkinson & Sallfors, 1991 U Software: Imperial College Finite Element Program (ICFEP), Potts & Zdravkovic (1999, 2001)
Outline A Energy transition: offshore wind

O Complexities of geotechnical design are increasing

£

U New design methods for offshore wind turbine monopiles

lifecycle assessment » preferred foundation system in shallow waters

wind farm

typical offshore monopile

C0z2
A

reduction in carbon

o emissions
O Example applications:
» Aenergy transition: offshore wind energy transition
» B reuse of existing infrastructure
» C nature-based design and lifecycle assessment
> D radioactive waste disposal D>10m L/D <5

Hornsea 2 monopiles, UK, Orsted

O Software: Imperial College Finite Element Program (ICFEP), Potts & Zdravkovic (1999, 2001) hitps://orsted.co. -soluti \ore-wind/our-wind. msea2
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Technical challenge

U Industry-led new design methods

Spring force, p

é [ ]
h

y
’.‘“‘
ot
i P
et
b

Pile displacement, y

empirical p — y relationships
from field tests on slender piles,

D~1m; L/D > 20

Ground and soil characterisation
U Site locations for PISA pile testing, ground investigation and sampling

oil & gas piles

test

how to improve?
X no full-scale testing

X no correlations from
scaled testing

i yes to numerical
! O modelling, with scaled
! field testing

D>10m;2<L/D<6
overconservative design

OWT monopiles

= 40m of low plasticity overconsolidated
glacial clay till, Pl ~18%;

= extended Modified Cam Clay model

= dense natural marine sand, Dz~75 %
overlayed by hydraulic sand fill, Dp~100%

= bounding surface plasticity model
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PISA project team
U Plle Soil Analysis (PISA) Joint Industry Project (JIP), 2013-2018

——.. Discretionary Project Steering Committee o Non OWA Part:lers
: Van Oord WE]  47e0F

Orsted %.... @on [
’SSE ‘?"."Stat()il SD Statkraft  VATTENFALL oo . @ GE Renewable Energy

l—l Project Partner Technical Experts

Lead Partner Independent Technical Review Panel
Prof Guy Houlsby Prof Harvey Burd Prof Chris Martin

I\RU
Prof Ross McAdam 0 rSted | | Chairman: Prof Gudmund Eiksund

CARBON
TRUST

Academic Work Group

PI: Prof Bayron Byme

wmperial College Project Manager:
Londan Jesper Skov Gretlund
Prof Lidija Zdravkovic
Prof Richard Jardine

Prof David Potts

Dr David Taborda

Prof Ken Gavin
Dr Paul Doherty
Dr David Igoe

Liv Hamre
Technical Manager: David Maloney Or Fabian Kirsch
Miguel Pacheco Andrade

|
I ]
Assisting Consultants Testing Contractors

ATKINS G @nyoansiee ars [T marmg

X0 Consultant

Steel suppler Plle Fabricator Flre Opticsuppler  pile nstallation

A .
SANGWIN IN SITU conceer

Laboratory Testing ___CPT Investi

Testing Assistance  Testing Management
socoTEC

Structurl and Principal Testing
sis. Contractor

Ste Preparation

PISA project

U High level overview

ground
characterisation & reduced scale
3D FE classA field testing

(blind) predictions
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PISA project PISA project

U High level overview U High level overview
- 250
o 4 u Field test 4 ., Fieldtest
2 a0 z =
O T ~
comparison of FE g 1500 ” comparison of FE g " APUDNY
blind predictions 8 1 reduced scale blind predictions I R reduced scale
and field tests H h P field testing and field tests H h field testing
5 ™ " Cowden - cL2 s o Dunkirk - DM4
D=20m,L/D =525 /" D=0762m,L/D =525 |
o o '
o s w0 20 Develop o 2 4 & & i
,,,,,,,,,, Ground level movement.uy () 10030 FE - - - ]| _ Ground tevel movement,u mm)
analyses of full H extended 1D |
scale monch:j)iles PISA Winkler |
—~ A~ model ' =
S H—t ! s accurate response
4 d:l;f::‘e'd distributed ! I predictign with 1D
i) toad APP'Y Q PISA Winkler model
e =y 5 | — 3DFE
. ; =4 —— 1D PISA Winkler
base shear base moment : 0 ™ T T
o, Ay My ' 0 02 04 06 08 10
My P Displacement u,, (m)
New design method: formulation A Energy transition: offshore wind
U4 3D FE-based PISA design method U Site-specific numerical modelling enabled
» Formulation of 4 reaction curves «conic function: N i aati SAVING in embedded steel alone up to 35%
_ 2 _ - _ > quantification of ground response For a typical windfarm of 100 turbines:
— = = O i y _x y _x y — N X . R . . SAVING in steel alone = 31,000 t
y=p,m,Hg, Mg -n (ﬁ - Z) +A-n) (E - E) (E - 1) =0 > confidence in optimising monopile design i onneser
distributed load / moment or . . .
base force / moment Normalised  Non-dimensional | Non-dimensional » development of new design methods
ultimate values variable | form for clays 1 form for sands Drsted, 2017
Vu = Py My, Hpy , Mpy p . p/GuD) | p/(oyD)
Ry ‘ T WG/ (SuD) | (Go)/ (D) pT—
1 — | 1 I
' m ' m/(SyD?) ' m/(pD) | j PSR e
n — curvature i 7 3 WGo)/Su 3 (WGo)/ ol L SKANSKA
! H | Hp/(S,D®) | Hg/(0,D%) . . . .
; o OO i 0 Rapid uptake and application in industry since 2015 PISA project:
‘ M | Mg/(SuD?) | Mp/(0;D%) winner of the
& — initial stifiness 3 F=a,P, 0, Pp » reduced the use of materials and cost of foundations 2017 BGA If=leming Award
! ; : ) ) or
° lateral displacement or >
i cross—psection o otion “dlay:  Byme etal. (2020) » helped unlock the expansion of wind farms in the North Sea excellence in
u — u u u u . N . P . i i
) sand:  Burd et al. (2020a) > reduced the cost of wind-produced electricity in the UK geotechnical design
ultimate values layered: Burd et al. (2020b)
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Outline
1 Complexities of geotechnical design are increasing
' geOther/,;
lifecycle assessment 4
=] | "a

£

5 =P
S — -
3
N . c
reduction in carbon 2z
emissions @

O Example applications: :
A energy transition: offshore wind energy transition
B reuse of existing infrastructure

C nature-based design and lifecycle assessment

D radioactive waste disposal

YV VY

O Software: Imperial College Finite Element Program (ICFEP), Potts & Zdravkovic (1999, 2001)

Soil characterisation & constitutive modelling

U Long-term evolution of clay behaviour

» Transient processes of consolidation and creep
concept of isotach viscosity

Primary Excess pore water
consolidation pressure dissipation

Secondary .
compression / Fabric changes

under maintained
creep e lond

Void ratio, e

- lines of equivalent time, t,

tp logt (time) compression/
creep

» Creep leads to
o continued reduction of the pore space volume and continued settlements
o increase in undrained shear strength

Isotropic compression

11 november 2025

B Reuse of existing infrastructure

1 Building foundations
> building refurbishment or re-development

O Ageing flood embankments / levees
» raising to adapt to climate change (sea-level rise)

0 Technical challenge
» being able to quantify the possible additional
capacity of the ground, after structures being in
place for several decades

Lincolnshire, UK; October 2023

Adaptation to climate change
U Thames Estuary trial flood embankments — BRE test sites in 1970s and '80s

Barking Halfway
Reachg Reach

[ trial embankments

|
Mucking #
[

Rainh
é“‘\-a'” am East Tilbury Marshes,

O boreholes

Longreach

=== "
Woolwich Thames
Mead

Gravesend
Reaches

Study locations: Mucking Marshes (Sheehy, 2005; Losacco, 2007)

Dartford (Guo, 2021; Tan, 2022; Leung, 2023)
data curtesy of Dr John Powell
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Transient processes: consolidation and creep
O Gain in undrained shear strength

undrained
shearing

q
Undrained shear strength, S,, (kP orat
field ndrained shear strength, S,, (kPa) , laboratory| | Y- duration
WA ® 4L ’
2 “measured ' 200
1972 H w
o° = BHE E L
N | | \| o BHF =
0 g S B o vlo| | | g160
ok ) ! | i
.o '. . 1976 ! E '
. - w ¢ || ™ BHEW | ' =120 pre-shearing creep
E-2- et e BHEM| | ° 6 months
3 . % Sy post-embankment 2 g 1 month
2.4 o 15 construction 3 no creep
- la ' £
L] K @
o : e 40
a 1 @
-6 + o ) ! 6
S, pre-embankment o ! o717
construction 4 ! 0 1 2 3 4 5 6
8-l ! Axial strain (%)

Marsland (1986), Thames Estuary San Francisco Bay Clay, Al Haj et al. (2017)

Adaptation to climate change: embankment raising

O Trial embankment (Bank 2) at Mucking Flats, Thames Estuary
» Generalised elasto-visco plastic equivalent time model (Bodas Freitas et al., 2015)

raised

initial

raising after 45 years of consolidation & creep (2023) — Hy. consgcreep = 5:3 M
raising after 45 years of consolidation only (2023) |~ H,. .ons = 3.9 M

initial construction (1978) .- H;p;p = 2.8 m

Trial embankment raising Zdravkovic et al. (2019)
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Transient processes: consolidation and creep

0 Trial embankment (Bank 2) at Mucking Flats, Thames Estuary
» Extended modified Cam Clay model

» Generalised elasto-visco plasctic equivalent
time framework (from Yin & Graham, 1999)

Distance (m)

= long-term settlement prediction accounting
for consolidation only

Distance (m)

= long-term settlement prediction accounting

for consolidation and creep
Zdravkovic et al. (2019)

BANK 2 E BANK 2
0005525 30 40 45 50 55 = | oo o B w0 w5 w0 5 P,
—_ A\ z o~
£ 4 |
= 00 \“\‘{ /',/’ i € o1o \\ //é’
/i - /
: o~/ 8- \
£ o020 o - \\\ - 1§ o020 \ //
= || Measure \ L= " 7
4 (Pugh, 1978) ' 3 \. " / |model (EVP-ET)
0.30 . H 0.30 \_/ 7 t I
1230 i ’ = — 2t |
0.40 | 040 s -
i

Foundation reuse

U Single footings in Bothkennar clay
» Gain in foundation capacity due to consolidation and creep

field test (Lehane & Jardine, 2003)

200
Settlement (mm)
Testing applied to footings

250 '
Capacity on 1

1 reuZe, ;}:ﬂm (2001) E field loading of 2.2 x 2.2 m square footings
s60=] PR !
'
- | Initial f?otlng Capacity gain E
I capacity, ginie Ag=48% |
S50 (1990) R e AL |

2 )

g S H
; & Aq — Greuse — Ginit !
2 init !
< 1
J ) !
50 - 11 years maintained !
] '
load, g = 0.64q;n;, —— field test H
(@ FoS ~ 1.55) O model prediction |
(1990-2001) !
o —T T d i
0 100 300 400 500 H
I
I
I
'

Bodas Freitas et al. (2015)
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Foundation reuse @

U Single footings in Bothkennar clay
» Gain in foundation capacity due to consolidation and creep

80 . | creep deformations and gain in undrained shear strength
Capacity on '
] reuse, qyeuse (2001) | ARE NOT NEGLIGIBLE
29 el N 100
_ | Initial footing /| capacity gain || __ ;Fc;S on 50 25 1.66 1.25 1.0
g capacity, qin;e ' Ag=48% | R 80 init
2 (1990{_‘_ e PO -—--¥____C e i i consolidation
£ A 5 q — Qini S| i & creep
g Aq = reuse init : .E 607_ 480/ + +
e init 'S ] ° *
< ) L E 40 ! %
_ & 11 years maintained -] ] 25% | o
! load, g = 0.64q;n, —— field test = s g~~~ -39 consolidation
(@ FoS ~ 1.55) O model prediction | O ; i - only
(1990-2001) ! ] x
o —T 1 T i 0 — T
g 00 RO g0 AN 80 1 0 20 40 60 80 100
lement (mm) 1
' Percent; re-| 9
Testing applied to footings ! ercentage pre-load (%)
Bodas Freitas et al. (2015)
Outline

O Complexities of geotechnical design are increasing

lifecycle assessment

1
(HIF]

A

reduction in carbon
emissions

O Example applications:
» Aenergy transition: offshore wind
» B reuse of existing infrastructure
» C nature-based design and lifecycle assessment
» D radioactive waste disposal

energy transition

1 Software: Imperial College Finite Element Program (ICFEP), Potts & Zdravkovic (1999, 2001)

11 november 2025

B Reuse of existing infrastructure

1 Accounting for creep, in addition to consolidation, in numerical models
» explains the measured deformations and gains in soil capacity

» demonstrates the significance of creep strains

» has the potential to reduce the use of materials, costs and construction time

Lincolnshire, UK; October 2023

C Nature-based design and lifecycle assessment

O Infrastructure embankments and slopes, earth dams
» exposed to soil-atmosphere-vegetation interaction
» climate-induced changes in weather patterns (rainfall & drought)
» vegetation and its maintenance

1 Technical challenge
» unsaturated soil states
> initial and current stress states
» weather changes are seasonal
> rainfall projection in long-term

Buxton to Manchester line, UK, June 2016
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Climatic and hydrological analysis @

U Future rainfall projections with climate change effects

an — Laij@lgﬁlin ajllfém” > statistical / stochastic modelling (BLRP+GLM)
£ go|_Me Tainfall rec
% > projection of climate variables by 2100 from
2 4 ‘ ; I:II]:I UKCP18
S . | ‘} I N H\ > Representative [CO2] Concentration Pathways
5 d] (RCP) scenario by 2100
oo 2005 2010 2015
Time (year)

= 80% range of E 500 m
predicted rainfall =

= +10% range E

— one simulation as input E. 300
BC to geotechnical §
analysis -

2
8

2020
2040 ear 2060 2080

. . ' s
Example: Rayleigh station, Essex, UK Onof (1992), Kaczmarska et al. (2014), Guo (2021)

Lifecycle assessment of infrastructure
U Rail embankment in Essex, UK: model validation 2006 - 2007

3 10
. £
mid-slope section = 0 -
ASH - 5% 0 SR s
LCF EE EANN 2
s3] . . =22
WLC © =-20 Nt - 74
5% N oL
Field measurements 5 930 S it p—
thurst et al., 201 w7 N s
(metursietar 20 g
2 50 T T T — 1 ¥
pwp contours: Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

(suction +ve, [kPa] 2006 P Time (monts) 2007
e

o

September 2006 March 2007

large suctions — shrinkage & settlement reduced suctions — swelling & heave
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Lifecycle assessment of infrastructure @
U Geotechnical lifecycle numerical model
example Network rail embankment, Essex, UK
X
L)

BAL
ASH
LCF

J X} advanced numerical analysis
8 3.
Qg o

Weathered London Clay » unsaturated HM modelling framework

» vegetation: root water uptake &

Unweathered London Clay evapotranspiraton

» precipitation: infiltration / runoff

2005 2020 60yrs of projected rainfall that accounts for 2080
climate change effects (RCP8.5 scenario)

| ]
| 25yrsaverage | 15yrs actual | |

rain rain EEZOO
T 235 |
initialisation of stress and pore tree removal o8 1y “( H | P $ L ‘J | i
pressure state in embankment 2007 & s ‘\'I‘L*‘W'L, b ‘w‘r\{m\*w e Jﬁ.ﬂnu.JI' dy ‘M,{m Wkl #‘JJ 1
2020 2040 2060 2080

Lifecycle assessment of infrastructure
U Rail embankment in Essex, UK: model validation 2007 - 2011

£ 80
mid-slope section E, 60 -
ASH o~ g o
LCF £ 240
WLC 52
a0 20
. » >
Field measurements o+ . "
(Smethurst et al., 2015) w 0 measure
§ —— model
g 2T & ——T T T T T T T 1 T
Mar Jun Oct Feb Jun Oct Feb Jun Oct Feb Jun Oct Feb

pwp contours: 2007 2008 2009 2010 2011
(suction +ve, [kPa]

September 2006 e Ee‘r'nber 2007

74

large suctions — shrinkage & settlement reduced suctions remain in embankment due to tree removal
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Lifecycle assessment of infrastructure

U Rail embankment in Essex, UK: assessment to 2080
» serviceability: projected lateral displacement and pore pressure evolution to 2080
ASH summer

mid-slope section 4] summer
— W7y 7z - |
LCF | | indication of
[ [ 0 it/ slippage of
WLC [
/ WLC |
E 4 4|
c
S
7 t
H
o -8 -8
12 -121
-16 16/, K i 1 N
-0.04 0 0.04 0.08 0.12 150 100 50 0 -50

Horizontal displacement (m) Pore pressure (kPa)

C Nature-based design and lifecycle assessment
U combining hydrological and geotechnical analyses

» takes account of climate change effects on rainfall and evapotranspiration

» has the potential to expose maintenance / stability issues
» can lead to a more sustainable use of vegetation growth and maintenance

U to validate and update long-term predictions requires monitoring data

» rainfall and evapotranspiration

» movements and pore pressures
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Lifecycle assessment of infrastructure @

U Rail embankment in Essex, UK: assessment to 2080
> stability: resilience to storm & antecedent conditions - maximum recorded rainfall 95 mm/day

wettest summer driest summer
August 2014 September 2069

Fs = 1.60

before storm

pwp contours
(suction +ve)
[kPa]

after storm
2850 100 450

Guo (2021)

Outline
O Complexities of geotechnical design are increasing
. (A(BOtf‘l(-l'rh7
lifecycle assessment 4
EER "=

£

(HIF]

AN /=Py
2
SNl &
— 2 & W o
reduction in carbon A = -
emissions A

U Example applications:
»> Aenergy transition: offshore wind
» B reuse of existing infrastructure
> C nature-based design and lifecycle assessment
» D radioactive waste disposal

energy transition

U Software: Imperial College Finite Element Program (ICFEP), Pots & Zdravkovic (1999, 2001)
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D Radioactive waste disposal @

UDisposal of high-level radioactive waste (HLW)
» proposed solution: deep burial in a Geological Disposal Facility

GDF - Geological Disposal Facility

Disposal tunnels with a multi-barrier system

&

. canister containing
uclear waste

. buffer: compacted
entonite clay

hitps:/fwww.go

o repository depth 200 to 1,000 m
o footprint 15 to 20 km?

o thermo-hydro-mechanical-chemical coupling in
the buffer and in the host environment

exceptionally long design life due to radioactive decay

Current state of the art

UDisposal of high-level radioactive waste (HLW)
» current learning: from a handful of field-scale experiments of limited duration

longitudinal section transverse section

concrete
heaters  buffer  plug granite

access tunnel

installation

FEBEX experiment (ENRESA, 2000) — 18 years
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Technical challenges @

U Long-term disposal of high-level waste (HLW)
> objectives for buffer design host rock_¢' ¢’

K R . . heat flux
o hydration to promote swelling and sealing of construction gaps
o mobilisation of design swelling pressures

> existing international experience based on AN water inflow
o laboratory scale element tests

o laboratory scale model tests

o full scale prototype experiments in the field
o numerical modelling

» ICL experience — development of numerical tools
o governing FE THM formulation (Cui, 2015)
o constitutive modelling of bentonite (Ghiadistri, 2019)
o temperatures in excess of 100°C (Alexandropoulou, 2025)
o groundwater chemistry (Lai, 2027)

‘ Yo
== Nuclear Waste EBS i
N Oervices Task Force k.
i Bentonite Mechanical Evolution

&
Current state of the art @
UDisposal of high-level radioactive waste (HLW)
» current learning: from a handful of field-scale experiments of limited duration

longitudinal section transverse section

concrete
heaters  buffer  plug granite

access tunnel

dismantling and coring of specimens

FEBEX experiment (ENRESA, 2000) — 18 years

10
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Current state of the art

UDisposal of high-level radioactive waste (HLW)
» one challenge: buffer itself and its hydration / saturation

S2
d i o
heat flux it
con 2. i gy .bentonite {py _ 598 m
p ) buffer
water inflow *\\\l
120 -
3
100 - ——
2 g0 b L o temperature field develops
e 3 : very early
RS o m—
g E N o stable temperature gradient
&L 40 across buffer thickness
@
= -4
20 3 Syr 18y
0 e e

0 1000 2000 3000 4000 5000 6000 7000
Time (days)
FEBEX experiment (ENRESA, 2000)

measured
model

Current state of the art

UDisposal of high-level radioactive waste (HLW)
» separate challenge: host formation

82
a4 i
heat flux .
e i e o=z
P W o] v
water inflow AAAN
100 100 -
:
] 80 —— model 5 80 :
13 = < 1\
o
E g0 & g 809 :host rock
o = 0 © 1 —
g 40 T, = 100°C .8
E £
2 ool L e
heater buffer
0 e ey 0 —— . —
0 0.2 0.4 0.6 0.8 1 1.2 2 4 6 8 10 12

Radial distance in the buffer (m) Radial distance in the host rock (m)

raised temperature at the rock interface

Current state of the art

UDisposal of high-level radioactive waste (HLW)
» one challenge: buffer itself and its hydration / saturation

2
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heat flux o 't“ B
con 3. i £ .jbentonite {5928 m
pl ) buffer

water inflow *\\\l

M0 T St atter 18 | 119
- -
100 _ arter years =

o &

Degree of saturation, Sy (%)
Degre of saturation, Sy (%)
~
o

| buffer ]
7 LR SN U SN SN 30-

0 0.2 0.4 0.6 0.8 1 1.2 0 0.2

Radial distance in the buffer (m)
measured
model

FEBEX experiment (ENRESA, 2000)

Current state of the art

UDisposal of high-level radioactive waste (HLW)
» GDF design has many variables

deposition galleries ¥

access tunnel

host rock

K4
o
S2 - after 5 years §

T

0.4 0.6 0.8 1 1.2

Radial distance in the buffer (m)

» tunnelling at large depths

» canister size and temperature

limit on the buffer

» number and spacing of

canisters in a gallery

» spacing between galleries

L =2 l
-3 3 1 e

11



Geotechniekdag 2025 11 november 2025

A
D Radioactive waste disposal Outlook on the future of computational analysis é‘@
UDisposal of high-level waste (HLW) O Highly coupled phenomena are becoming prevalent in
geotechnical engineering design THE NUMBER OF SOIL PARAMETERS,
U possibly the most complex geotechnical example . L their uncertainty and
. o pressing p yiarg ARE INCREASING SUBSTANTIALLY
» exceptionally long design life Q It relies on realistic ground models, intelligent interpretation complex FE analyses are
» demanding constitutive behaviour of soil data and robust numerical models and algorithms computationally demanding

constitutive
models

¢/
y/j—

U geotechnical analysis
» can accommodate these complex phenomena

ti I .
COSASZ;ZS Y fast update of forward predictions
conditions validation ‘ b
/ database N w1, @ V7 ad N

treats variables
as random

» is validated over relatively short periods of time

» currently being used as a tool to produce a safe design

training /
=) database for data-driven computations

surrogate models

Outlook on the future of computational analysis 6‘9
O Highly coypled phenorpena are becoming prevalent in
geotechnical engineering design THE NUMBER OF SOIL PARAMETERS, Thank you

. L their uncertainty and
0 Computer-aided design is pivotal for many of the current their inter-connectivity

pressing problems and sustainability targets L .
ARE INCREASING SUBSTANTIALLY for the invitation

Q It relies on realistic ground models, intelligent interpretation
of soil data and robust numerical models and algorithms

and

O Data-driven approach has the potential to assistin a

more automated manner with complex interactions of the fOF your attention today
increasing number of variables, but ...

= input data (soil behaviour, monitoring) need to be curated
= numerical analyses need to be robust and accurate

O With long design lives of infrastructure, continuous
geotechnical monitoring becomes increasingly necessary
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