Dielectric Shimming and EPT in MRI

Rob Remis

Delft University of Technology, Delft, The Netherlands

URSI-KIVI Meeting, Utrecht, February 1, 2017

Introduction

Two RF research topics in high-field MRI

- Dielectric shimming (optimal pad design)
- Electrical Properties Tomography EPT

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Introduction

Magnetic and RF fields in MRI

- The B₀ field: strong longitudinal static magnetic field (1.5T, 3T, 7T)
- Gradient fields: static magnetic fields used for slice selection
- RF field: transverse radiofrequency field used to flip the spins

Introduction

- The RF field is called the B_1 field
- Frequency of operation (Larmor frequency)

$$f = \gamma B_0$$

• γ is the gyromagnetic ratio \approx 42.577 MHz/T (proton) • Consequently,

$$f = 64$$
 MHz at 1.5T
 $f = 128$ MHz at 3T
 $f = 300$ MHz at 7T

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Introduction

- Time factor: $\exp(j\omega t)$
- Decomposition of the vectorial *B*₁ phasor into circularly polarized fields:

$$\hat{B}_{1} = \underbrace{\hat{B}_{1}^{\mathsf{rh}}(\mathbf{i}_{x} - j\mathbf{i}_{y})}_{\mathsf{circ. pol.}} + \underbrace{\hat{B}_{1}^{\mathsf{lh}}(\mathbf{i}_{x} + j\mathbf{i}_{y})}_{\mathsf{circ. pol.}}$$

- First term is right-handed with respect to the i_z -direction
- Second term is left-handed with respect to the iz-direction

$$\hat{B}_1^{\rm rh} = \frac{\hat{B}_{1;x} + j\hat{B}_{1;y}}{2} =: B_1^+ \qquad \hat{B}_1^{\rm lh} = \frac{\hat{B}_{1;x} - j\hat{B}_{1;y}}{2}$$

- The B_1^+ field essentially produces the MR image
- At sufficiently high frequencies, the dielectric composition of the body influences the B₁⁺ field
- Interference effects dielectric shimming
- Retrieval of dielectric properties of tissue EPT

Dielectric shimming

In collaboration with the Gorter Center of the LUMC

Prof. A. Webb (LUMC), Dr. W. Brink (LUMC), Ir. J. van Gemert (PhD, TUD/LUMC)

• In high-field MRI (\geq 3T) so-called signal voids may appear

No dielectric pads

With dielectric pads

Possible solutions: active and passive shimming

Dielectric shimming

- Main objective: develop an efficient dielectric pad design tool
- Observations Part 1:
 - Background (body, coil, etc.) remains fixed when looking for an optimal pad
 - Pads are relatively small w.r.t. the background configuration

Dielectric shimming

- Identify a domain where a pad can be possibly located = pad domain
- Make use of the linearity of Maxwell's equations
- and setup a scattering formalism

total field = background field + scattered field

Background field = field in fixed background (body+coil+...), Scattered field = field due to the presence of a dielectric pad

うせん 川田 (山田) (田) (日)

Dielectric shimming

• In a formula

$$\mathbf{b}_1^+ = \mathbf{b}_1^{+;\mathsf{no}\;\mathsf{pad}} + \mathsf{G}^{B_1^+\mathsf{J}} \left[\mathsf{I}_{P} - X_\mathsf{pad} \mathsf{G}^\mathsf{E}\mathsf{J}
ight]^{-1} X_\mathsf{pad} \mathbf{e}^\mathsf{no\;\mathsf{pad}}$$

 P = number of voxels belonging to the pad domain « order of system

Dielectric shimming

- Scattering formalism is essentially the same as application of the Sherman-Morrison-Woodbury inversion formula from linear algebra
- Pad forms a small rank perturbation of the large system
- Computing B_1^+ fields using scattering formalism is significantly faster than solving full systems for each pad realization
- Speed up factor strongly depends on pad size
- J. van Gemert *et al.*, IEEE Transactions on Medical Imaging, 2017.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへの

Dielectric shimming

- Observations Part 2
- Each voxel in the pad domain introduces a degree of freedom
- This many degrees of freedom is not necessary for designing pads in practice
- No optimization is included

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Dielectric shimming

In collaboration with the Imaging Division of the UMC Utrecht

Dr. N. van den Berg, Dr. A. Sbrizzi, Ir. S. Mandija

- Given the B_1^+ -field inside the body
- Determine the conductivity and permittivity tissue maps
- Determine the electric field strength

Electrical Properties Tomography

- Existing methods assume homogeneous media
- Differentiation operators act on the measured B_1^+ -field
- We have proposed a new solution methodology
- No homogeneous model is assumed
- Integral operators instead of differential operators
- Method can determine the electric field strength as well
- Method is called CSI-EPT: CSI = Contrast Source Inversion

Electrical Properties Tomography

CSI-EPT minimizes an objective function of the form

$$F(\mathbf{w}, \chi) = [F_{data}(\mathbf{w}) + F_{object}(\mathbf{w}, \chi)] F_{TV}(\chi)$$

- F_{data} data mismatch
- Fobject mismatch in satisfying Maxwell's equations
- F_{TV} regularization term
- $\chi = dielectric contrast function$
- $\mathbf{w} = \chi \mathbf{E} = \text{contrast source}$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Electrical Properties Tomography

- Integral Green's tensor representations for the fields are used
- Method updates contrast source and contrast in an alternate fashion uisng CG-type updating formulas
 - Fix contrast, update contrast source
 - Fix new contrast source, update contrast

Electrical Properties Tomography

- In the midplane of the birdcage coil, the RF field is approximately 2D and E-polarized
- 2D implentation for midplane tissue reconstruction (3T)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへの

Electrical Properties Tomography

Input: B1+ field Measured with an MRI scanner

Electrical Properties Tomography

- Recently, we have extended CSI-EPT to 3D
- Simplified inversion schemes have been/are being developed
- Real-time induced-current imaging

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ