Power Electronics & EMC (PE) group

# Re-imagining Volta's Battery Dream: A Twente Experience

UNIVERSITY OF TWENTE



Dr.ir. Prasanth Venugopal, Asst. Professor University of Twente, Power Electronics & EMC group



# Outline



- Brief history PE group
- PE group
  - Staff members
  - Research themes
  - Battery Research
  - Battery Capabilities

# **Brief History**

- PE group set up by Prof. Ferreira and Prof. Leferink in 2019
  - Originally attracted by potential battery R&D site @ technology base Twente
  - <u>PE + EMC</u> is a very unique combination





# PE Group, Research Themes



UNIVERSITY OF TWENTE.

> Modelling of conducted & radiated EMI and power quality. Development of test techniques to achieve immunity on PCB & system level.

Cell-level power electronics in battery management system to extend battery lifetime. To improve reliability by new packaging technologies and EMC solutions.

Technology for power-electronics

New semiconductor devices, materials (*e.g.*, wide bandgap) and packaging technologies for high power density and better reliability.



Decentralized, bottom-up, off-grid solar systems for 3 billion people living in energy poverty. Sustainable, socio-technical solutions: socio-cultural context, business models, policies.



Accurate measurements of electrical power flow/energy efficiencies in electrical systems. New concepts to improve accuracy, explore fundamental limitations and devise calibration methods.

# Battery Research Projects at UT PE

• Interreg NW-Europe **STEPS** Project

UNIVERSITY OF TWENTE

- Advising >200 e-storage local SMEs for new entrants
- Market pull effects for new e-storage solutions
- Implementing a 2 voucher based support program to transcend TRL  $5/6 \rightarrow 7$

- OPoost EU Accumulate (Twinx, Van Raam, Brekr, DNV GL, Contour, Twente Safety)
  - Electrochemistry, Cell Quality (IMS)
  - Electronics, BMS and Safety (PE)
- 2 NWO Zero-emission and Circular Shipping Projects (TU Delft + Maritime Industry..)





# **STEPS Project & Experiences**

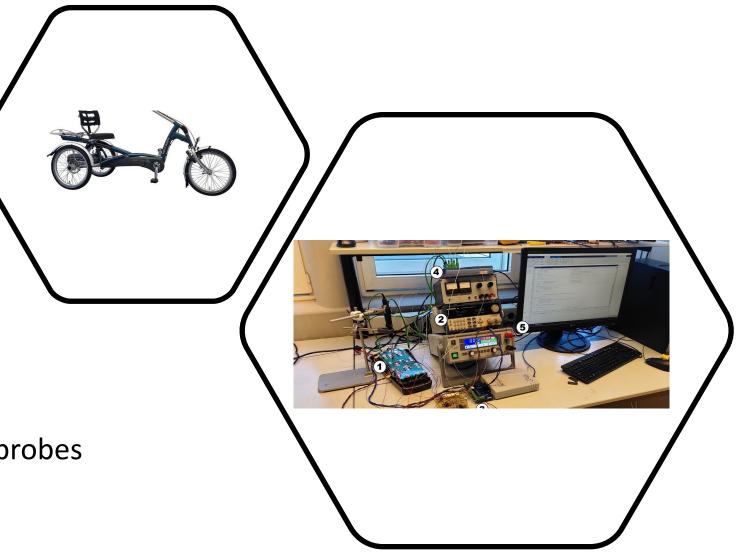
## UNIVERSITY OF TWENTE.

| Battery cells                                                                                                                       | Battery performance<br>evaluation                                                                                                                                                                                                                                                                                                  | EMC                                                                                                                                                                                           | Power electronics                                                                                                                                                                                                         | Testing and certification                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exergy                                                                                                                              | Watt4Ever<br>Octave<br>Voltfang                                                                                                                                                                                                                                                                                                    | Power&Energy<br>OXTO<br>MC Energy<br>SolarTechno                                                                                                                                              | OXTO<br>SolarTechno                                                                                                                                                                                                       | MC Energy<br>Voltfang<br>OXTO                                                                                                                                                                  |
| <ul> <li>Challenges:</li> <li>Improve interfacial transport at interface cell membrane</li> <li>Improve cell performance</li> </ul> | <ul> <li>Challenges:</li> <li>How to determine the SOH</li> <li>Quicker procedure for battery characterization</li> <li>What is the current state of health of a 2nd life battery as obtained from an electric vehicle</li> <li>Pros &amp; cons of connecting multiple pack parallel after (AC) or before (DC) inverter</li> </ul> | <ul> <li>Challenges:</li> <li>Will the system pass<br/>the EMC regulations</li> <li>EMC and thermal issues</li> <li>Do we meet the EMC<br/>standards</li> <li>Advice on EMC of BMS</li> </ul> | <ul> <li>Challenges:</li> <li>Are the power<br/>electronics within<br/>specs?</li> <li>Thermal issues with<br/>the power electronics</li> <li>Design of a micro<br/>inverter</li> </ul> Not listed:<br>OTG Energy, Zebra, | <ul> <li>Challenges:</li> <li>Will the product pass the standard</li> <li>Read-out problems with current sensor for testing of the (complete) system</li> <li>Are the standards met</li> </ul> |

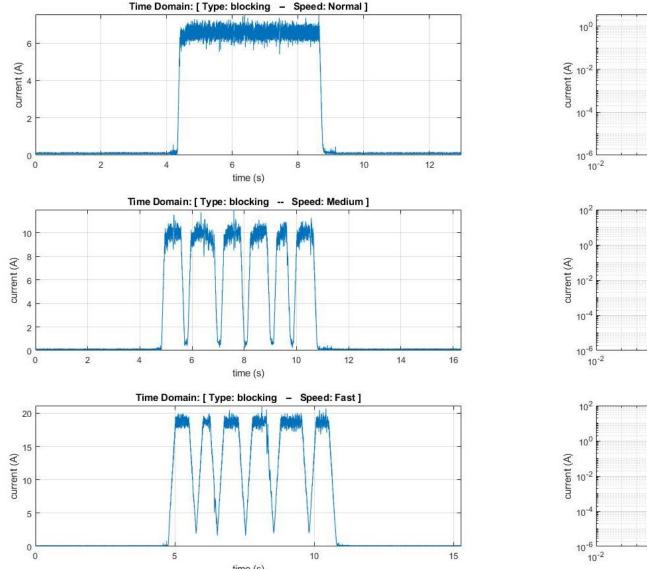


Accumulate In-Situ Measurements

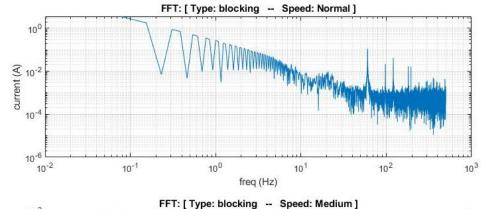


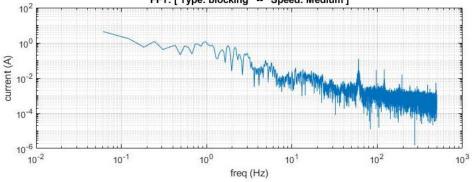

Aim: To study the influence of driving cycles on degradation in light EVs using both in-situ and laboratory-based simulations

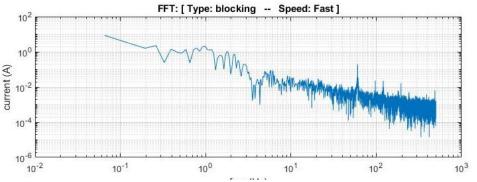
Researcher: Ir. Ing. Maarten Appelman



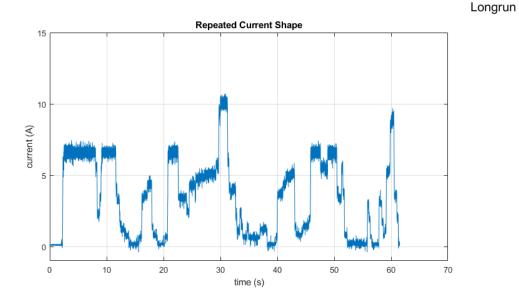

# Accumulate Measurement Setup


- Battery pack
- Programmable DC-load
- Data logger + differential probes
- Thermocouple
- SCPI + PS API

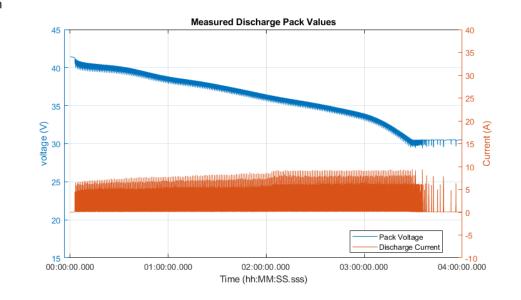


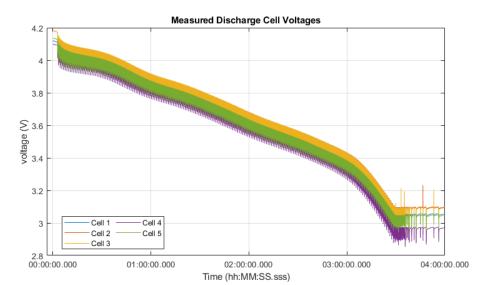


## Accumulate – in situ measurements

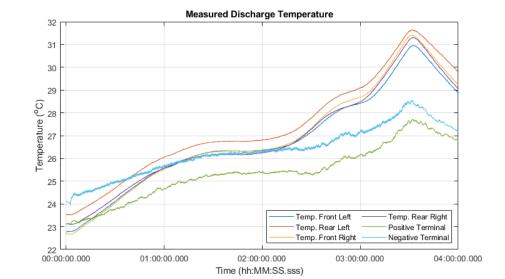



UNIVERSITY OF TWENTE.







## Accumulate – in situ measurements



UNIVERSITY OF TWENTE.





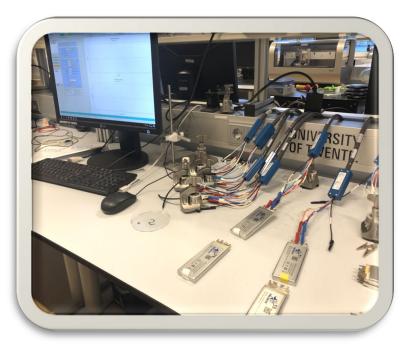




# Accumulate Results

- Heating of cells is not just related to average temperature
- First hypothesis that SOC can influence rate of temperature rise
- The discharge profiles with relatively long cool-down periods, show significantly lower maximum temperatures.

# Second Life Batteries




- Battery Echelon Utilization.
- Different screening and cell selection methods for second life batteries.
- Battery SOH measurement (Fast and accurate methods for testing the state of health of used battery).
- Laboratory study to find a new definition on battery SOH.
- Remaining Useful Life Prediction (RUL) methods for SLBs based on different application.





# Cell Selection Criteria for Superbike



Terminal Voltage=710 V Capacity =19.05 Ah Total Energy= 13.5 kWh Number of the Modules= 12 Voltage of each module=59.2 V



https://electricsuperbiketwente.nl/

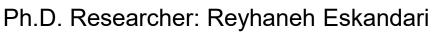
- Qualification testing to design a battery pack for a fully electric racing motorcycle.
- Obtain the best performance from the cells.

-

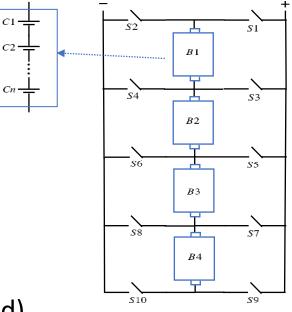
- To avoid impedance mismatching between the cells inside the battery pack.
- Finding optimal configuration and cells sequence.

# **Highly Integrated Battery Electronics**

- Multi-level AC output can be achieved by taking advantage of power switches of reconfigurable batteries and their customized output voltage
- The charger on the grid or inverter can be eliminated
- Extra battery cell balancing circuitry can be eliminated
- The output voltage THD can be reduced
- Smaller filter is required
- Low voltage MOSFETs are used


Challenges:

UNIVERSITY OF TWENTE


- High number of switches (Application dependent trade-offs)
- Complex control (multi-layer decentralized controller can be employed)



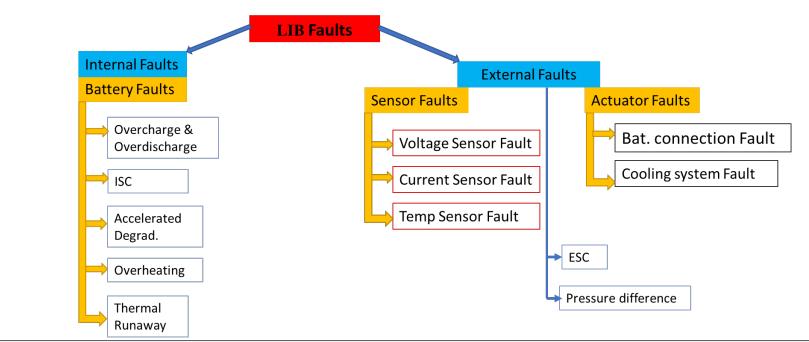
 -Skłodowska-Curie Action (MSCA) Innovative Training Network (ITN) n Joint Doctorates (EJD) within the Horizon 2020 Programme of the European Commission.







C2


# Battery Safety:

#### UNIVERSITY OF TWENTE.

# Fault Diagnostics and Mitigation

> Understanding of Faults mechanism serves as a foundation for developing faults diagnostic methods

> Li-ion battery faults are usually categorized into internal and external faults:





A Marie-Skłodowska-Curie Action (MSCA) Innovative Training Network (ITN) European Joint Doctorates (EJD) within the Horizon 2020 Programme of the European Commission.

Ph.D. Researcher: Regis Nibaruta



# Top Sector Infrastructure: Battery Lab

## UNIVERSITY OF TWENTE.

- Battery Laboratory Equipment
  - 1. Keysight Impedance Analyzer (E4990A)
  - 2. Solartron EIS for Battery Measurements (Potentiostat)
  - 3. Battery Cell Cycler: Arbin Instruments LBT 5V-30A-8CH
  - 4. Chroma DC Electronic Loads
  - 5. Battery Climate Chambers (Hielkema)
  - 6. Battery Module Cycler (Almost finalized)
  - 7. BMS, battery emulators etc.....





# **Battery Testing Capabilities**

#### UNIVERSITY OF TWENTE.

C/M/P Performance Testing

Module/pack cycler: up to 60V, 50A, 4 channels
BMS evaluation (Cell simulator: 5V, 12 channel)
Cyclic ageing, for varying load cycles (Max 1500V, 600A, 6kW)
Charge and discharge (Max 1500V, 600A, 6kW)
Performance testing incl. SOC, SOH, roundtrip efficiency etc.
Climate chamber: (-20 to +80 degC)

C/M/P EIS - Electrochemical Impedance Spectroscopy Range: 0.01 mHz - 1MHz, 100V, 3A Impedance testing and analysis (detailed behavior, ageing effects, etc.)

# Battery Diagnostics and Prognostics WORKSHOP

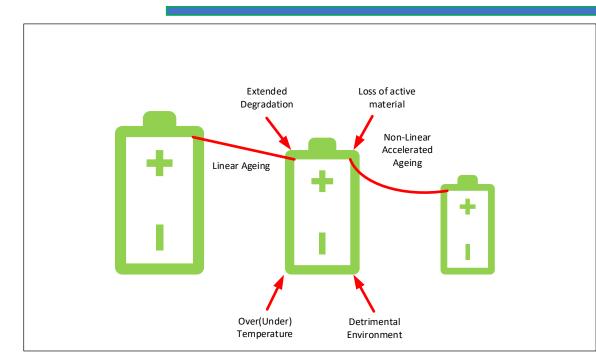


## **Motivation:**

• Create awareness about R&D within the field of power electronics, measurements, and the battery ecosystem.

28 October 2022

- Bridge the gap between knowledge institutions and the battery industry in the Netherlands.
- Train industry partners from the Netherlands and north-west Europe on battery performance and testing within the ambit of the STEPS project.
- Future collaboration between various stakeholders and the University of Twente.


# Advanced Battery Charging/ Power Electronics

- Research Topics:
- Cell → Module → Pack based Power Electronics
- Battery Second Life Sorting and Utilization
- Battery Performance Measurements: SOC, SOH, SOP → Accurate and Fast
- Advanced BMS and Reconfigurable Batteries
- Modelling and Impact of Ageing/ Degradation → Module-to-Pack
- Extension to Chemistry-Agnostic Impact Assessment

- Ph.D. 1: Reza Azizighalehsari Echelon Utilisation of Automotive LiB Packs for a Second Life in Grid
- Ph.D. 2: Reyhaneh Eskandari Advanced BMS Systems in Transportation (MSC ETUT)
- Ph.D. 3: Regis Nebaruta (Ukraine) Battery Safety and SOH (MSC ETUT)
- Ph.D. 4: Ning Zhansheng\* Modelling & Impact of Ageing in LiB (\*Sept 2022)
- Several MSc. + BSc. Researchers









## Battery Charge For Thought Quotes:

- Battery is a <u>Deterministic</u> system and must be "measurable accurately"
- Non-linear ageing is not comparable to a bucket with holes; but a <u>Deflatable</u> <u>Balloon</u> with holes