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Do IT initiative

• Delft on Internet-of-Things
https://www.tudelft.nl/iot/

• Mission: 
– Connect researchers & industry
– Combine technology and creativity 

(within and beyond TU Delft)
– Create a 5G+IoT field lab

https://www.tudelft.nl/iot/
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30 years ago…
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What if you could remotely control real or virtual objects 
in real time?

“The Tactile Internet”
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1 ms challenge
• Ultra-responsive (round-trip latency of 1 ms)

• Ultra-reliable (outage of about 1 ms/day)

5G

Source: https://www.etsi.org/images/articles/Future-IMT.png

https://www.etsi.org/images/articles/Future-IMT.png
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Software-Defined Networking (SDN) to the rescue?
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Traditional routing

Source: https://commons.wikimedia.org/wiki/File:Cisco-rs1.jpg

• Control Plane:

– Maintains routing table

– OSPF, BGP, …

• Data Plane:

– Forwards packets

https://commons.wikimedia.org/wiki/File:Cisco-rs1.jpg
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Disadvantages of traditional routing

• Difficult to add new functionality 
(proprietary software)

• Built on fixed-function hardware

• Complex network management

• Constant communication between routers
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Software-Defined Networking

Traditional Network Software Defined Network

SDN Controller Forwarding device with 
decoupled control

Forwarding device with 
embedded control

Decouple control plane 
from data plane

Traditional Network Software Defined Network
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Advantages of SDN

• APPs: monitoring, security, TE, …

• Controller a.k.a. Network Operating System
– Centralized decision making
– Programmable 

• Switches
– Only need to worry about forwarding
– Reduced CapEx

Benefit from 
open source 
solutions

Even open hardware:
https://www.opencompute.org

https://www.opencompute.org/
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OpenFlow

Source: OpenFlow Switch Specification v1.5.1
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ABSTRACT
This whitepaper proposes OpenFlow: a way for researchers
to run experimental protocols in the networks they use ev-
ery day. OpenFlow is based on an Ethernet switch, with
an internal flow-table, and a standardized interface to add
and remove flow entries. Our goal is to encourage network-
ing vendors to add OpenFlow to their switch products for
deployment in college campus backbones and wiring closets.
We believe that OpenFlow is a pragmatic compromise: on
one hand, it allows researchers to run experiments on hetero-
geneous switches in a uniform way at line-rate and with high
port-density; while on the other hand, vendors do not need
to expose the internal workings of their switches. In addition
to allowing researchers to evaluate their ideas in real-world
traffic settings, OpenFlow could serve as a useful campus
component in proposed large-scale testbeds like GENI. Two
buildings at Stanford University will soon run OpenFlow
networks, using commercial Ethernet switches and routers.
We will work to encourage deployment at other schools; and
We encourage you to consider deploying OpenFlow in your
university network too.

Categories and Subject Descriptors
C.2 [Internetworking]: Routers

General Terms
Experimentation, Design

Keywords
Ethernet switch, virtualization, flow-based

1. THE NEED FOR PROGRAMMABLE
NETWORKS

Networks have become part of the critical infrastructure
of our businesses, homes and schools. This success has been
both a blessing and a curse for networking researchers; their
work is more relevant, but their chance of making an im-
pact is more remote. The reduction in real-world impact of
any given network innovation is because the enormous in-
stalled base of equipment and protocols, and the reluctance

to experiment with production traffic, which have created an
exceedingly high barrier to entry for new ideas. Today, there
is almost no practical way to experiment with new network
protocols (e.g., new routing protocols, or alternatives to IP)
in sufficiently realistic settings (e.g., at scale carrying real
traffic) to gain the confidence needed for their widespread
deployment. The result is that most new ideas from the net-
working research community go untried and untested; hence
the commonly held belief that the network infrastructure has
“ossified”.

Having recognized the problem, the networking commu-
nity is hard at work developing programmable networks,
such as GENI [1] a proposed nationwide research facility
for experimenting with new network architectures and dis-
tributed systems. These programmable networks call for
programmable switches and routers that (using virtualiza-
tion) can process packets for multiple isolated experimen-
tal networks simultaneously. For example, in GENI it is
envisaged that a researcher will be allocated a slice of re-
sources across the whole network, consisting of a portion
of network links, packet processing elements (e.g. routers)
and end-hosts; researchers program their slices to behave as
they wish. A slice could extend across the backbone, into
access networks, into college campuses, industrial research
labs, and include wiring closets, wireless networks, and sen-
sor networks.

Virtualized programmable networks could lower the bar-
rier to entry for new ideas, increasing the rate of innovation
in the network infrastructure. But the plans for nationwide
facilities are ambitious (and costly), and it will take years
for them to be deployed.

This whitepaper focuses on a shorter-term question closer
to home: As researchers, how can we run experiments in
our campus networks? If we can figure out how, we can
start soon and extend the technique to other campuses to
benefit the whole community.

To meet this challenge, several questions need answering,
including: In the early days, how will college network admin-
istrators get comfortable putting experimental equipment
(switches, routers, access points, etc.) into their network?
How will researchers control a portion of their local net-
work in a way that does not disrupt others who depend on
it? And exactly what functionality is needed in network

ACM SIGCOMM Computer Communication Review 69 Volume 38, Number 2, April 2008
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Installing flow rules
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OpenNetMon: network telemetry

• Per-flow counters

– Packet counters (PC)

– Byte counter (BC)

– Flow duration (FD)

• Throughput: 
∆"#
∆$%

• Packet loss: PCstart - PCend

• Delay: timed probe packets

N. van Adrichem, C. Doerr, and F.A. Kuipers, “OpenNetMon: Network Monitoring in OpenFlow Software-Defined Networks,” 

Proc. of IEEE/IFIP NOMS, 2014.
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Failures are bound to happen

Waiting for the controller 
to install new rules is too 
time consuming!
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Fast Failover

1. Fast recovery: Pre-install backup paths
2. Fast detection: Couple per-link BFD to Fast Failover buckets

The switch executes the actions of the first bucket with a life watch port
3. Slow optimality: Rely on controller to reconfigure

- N. van Adrichem, B. van Asten, and F.A. Kuipers, “Fast Recovery in Software-Defined Networks, Proc. of EWSDN 2014.
- N.L.M. van Adrichem, F. Iqbal, and F.A. Kuipers, “Backup rules in Software-Defined Networks,” Proc. of IEEE NFV-SDN 2016.
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SD-WAN
WAN: A network spanning a large geographical area

B4: Experience with a Globally-Deployed
Software Defined WAN
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Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,

Urs Hölzle, Stephen Stuart and Amin Vahdat
Google, Inc.
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ABSTRACT
We present the design, implementation, and evaluation of B�, a pri-
vate WAN connecting Google’s data centers across the planet. B�
has a number of unique characteristics: i) massive bandwidth re-
quirements deployed to a modest number of sites, ii) elastic traf-
�c demand that seeks to maximize average bandwidth, and iii) full
control over the edge servers and network, which enables rate limit-
ing and demand measurement at the edge. �ese characteristics led
to a So�ware De�ned Networking architecture using OpenFlow to
control relatively simple switches built from merchant silicon. B�’s
centralized tra�c engineering service drives links to near ���� uti-
lization, while splitting application �ows among multiple paths to
balance capacity against application priority/demands. We describe
experience with three years of B� production deployment, lessons
learned, and areas for future work.

Categories and Subject Descriptors
C.�.� [Network Protocols]: Routing Protocols

Keywords
Centralized Tra�c Engineering; Wide-Area Networks; So�ware-
De�ned Networking; Routing; OpenFlow

1. INTRODUCTION
Modern wide area networks (WANs) are critical to Internet per-

formance and reliability, delivering terabits/sec of aggregate band-
width across thousands of individual links. Because individual
WAN links are expensive and because WAN packet loss is typically
thought unacceptable,WANrouters consist of high-end, specialized
equipment that place a premium on high availability. Finally, WANs
typically treat all bits the same. While this has many bene�ts, when
the inevitable failure does take place, all applications are typically
treated equally, despite their highly variable sensitivity to available
capacity.

Given these considerations, WAN links are typically provisioned
to ��-��� average utilization. �is allows the network service
provider to mask virtually all link or router failures from clients.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM’13, August 12–16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

Such overprovisioning delivers admirable reliability at the very real
costs of �-�x bandwidth over-provisioning and high-end routing
gear.
Wewere facedwith these overheads for building aWAN connect-

ing multiple data centers with substantial bandwidth requirements.
However, Google’s data center WAN exhibits a number of unique
characteristics. First, we control the applications, servers, and the
LANs all the way to the edge of the network. Second, our most
bandwidth-intensive applications perform large-scale data copies
from one site to another. �ese applications bene�t most from high
levels of average bandwidth and can adapt their transmission rate
based on available capacity.�ey could similarly defer to higher pri-
ority interactive applications during periods of failure or resource
constraint. �ird, we anticipated no more than a few dozen data
center deployments, making central control of bandwidth feasible.
We exploited these properties to adopt a so�ware de�ned net-

working (SDN) architecture for our data center WAN interconnect.
We were most motivated by deploying routing and tra�c engineer-
ing protocols customized to our unique requirements. Our de-
sign centers around: i) accepting failures as inevitable and com-
mon events, whose e�ects should be exposed to end applications,
and ii) switch hardware that exports a simple interface to program
forwarding table entries under central control. Network protocols
could then run on servers housing a variety of standard and custom
protocols. Our hope was that deploying novel routing, scheduling,
monitoring, andmanagement functionality and protocols would be
both simpler and result in a more e�cient network.
We present our experience deploying Google’s WAN, B�, using

So�ware De�ned Networking (SDN) principles and OpenFlow [��]
to manage individual switches. In particular, we discuss how we
simultaneously support standard routing protocols and centralized
Tra�c Engineering (TE) as our �rst SDN application. With TE, we:
i) leverage control at our network edge to adjudicate among compet-
ing demands during resource constraint, ii) use multipath forward-
ing/tunneling to leverage available network capacity according to
application priority, and iii) dynamically reallocate bandwidth in the
face of link/switch failures or shi�ing application demands. �ese
features allow many B� links to run at near ���� utilization and all
links to average ��� utilization over long time periods, correspond-
ing to �-�x e�ciency improvements relative to standard practice.
B� has been in deployment for three years, now carries more traf-

�c than Google’s public facing WAN, and has a higher growth rate.
It is among the �rst and largest SDN/OpenFlow deployments. B�
scales tomeet application bandwidth demandsmore e�ciently than
would otherwise be possible, supports rapid deployment and iter-
ation of novel control functionality such as TE, and enables tight
integration with end applications for adaptive behavior in response
to failures or changing communication patterns. SDN is of course
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IXP + SDN = SDX
SDX: A Software Defined Internet Exchange

Arpit Gupta†, Laurent Vanbever?, Muhammad Shahbaz†, Sean P. Donovan†, Brandon Schlinker‡

Nick Feamster†, Jennifer Rexford?, Scott Shenker⇧, Russ Clark†, Ethan Katz-Bassett‡

†Georgia Tech ?Princeton University ⇧UC Berkeley ‡Univ. of Southern California

Abstract

BGP severely constrains how networks can deliver traffic over the
Internet. Today’s networks can only forward traffic based on the
destination IP prefix, by selecting among routes offered by their
immediate neighbors. We believe Software Defined Networking
(SDN) could revolutionize wide-area traffic delivery, by offering
direct control over packet-processing rules that match on multiple
header fields and perform a variety of actions. Internet exchange
points (IXPs) are a compelling place to start, given their central role
in interconnecting many networks and their growing importance in
bringing popular content closer to end users.

To realize a Software Defined IXP (an “SDX”), we must create
compelling applications, such as “application-specific peering”—
where two networks peer only for (say) streaming video traffic. We
also need new programming abstractions that allow participating
networks to create and run these applications and a runtime that
both behaves correctly when interacting with BGP and ensures that
applications do not interfere with each other. Finally, we must ensure
that the system scales, both in rule-table size and computational
overhead. In this paper, we tackle these challenges and demonstrate
the flexibility and scalability of our solutions through controlled and
in-the-wild experiments. Our experiments demonstrate that our SDX
implementation can implement representative policies for hundreds
of participants who advertise full routing tables while achieving
sub-second convergence in response to configuration changes and
routing updates.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks] Network Architecture and Design:
Network Communications
General Terms: Algorithms, Design, Experimentation
Keywords: software defined networking (SDN); Internet exchange
point (IXP); BGP

1 Introduction

Internet routing is unreliable, inflexible, and difficult to manage.
Network operators must rely on arcane mechanisms to perform
traffic engineering, prevent attacks, and realize peering agreements.
Internet routing’s problems result from three characteristics of the
Border Gateway Protocol (BGP), the Internet’s interdomain routing
protocol:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626300

• Routing only on destination IP prefix. BGP selects and exports
routes for destination prefixes. Networks cannot make more fine-
grained decisions based on the type of application or the sender.

• Influence only over direct neighbors. A network selects among
BGP routes learned from its direct neighbors, and exports selected
routes to these neighbors. Networks have little control over end-
to-end paths.

• Indirect expression of policy. Networks rely on indirect, obscure
mechanisms (e.g., “local preference”, “AS Path Prepending”) to in-
fluence path selection. Networks cannot directly express preferred
inbound and outbound paths.

These problems are well-known, yet incremental deployment of
alternative solutions is a perennial problem in a global Internet
with more than 50,000 independently operated networks and a huge
installed base of BGP-speaking routers.

In this paper, we develop a way forward that improves our existing
routing system by allowing a network to execute a far wider range
of decisions concerning end-to-end traffic delivery. Our approach
builds on recent technology trends and also recognizes the need for
incremental deployment. First, we believe that Software Defined
Networking (SDN) shows great promise for simplifying network
management and enabling new networked services. SDN switches
match on a variety of header fields (not just destination prefix),
perform a range of actions (not just forwarding), and offer direct
control over the data plane. Yet, SDN currently only applies to
intradomain settings, such as individual data-center, enterprise, or
backbone networks. By design, a conventional SDN controller has
purview over the switches within a single administrative (and trust)
domain.

Second, we recognize the recent resurgence of interest in Internet
exchange points (IXPs), which are physical locations where multiple
networks meet to exchange traffic and BGP routes. An IXP is a
layer-two network that, in the simplest case, consists of a single
switch. Each participating network exchanges BGP routes (often
with a BGP route server) and directs traffic to other participants
over the layer-two fabric. The Internet has more than 300 IXPs
worldwide—with more than 80 in North America alone—and some
IXPs carry as much traffic as the tier-1 ISPs [1, 4]. For example,
the Open IX effort seeks to develop new North American IXPs with
open peering and governance, similar to the models already taking
root in Europe. As video traffic continues to increase, tensions grow
between content providers and access networks, and IXPs are on the
front line of today’s peering disputes. In short, not only are IXPs the
right place to begin a revolution in wide-area traffic delivery, but the
organizations running these IXPs have strong incentives to innovate.

We aim to change wide-area traffic delivery by designing, proto-
typing, and deploying a software defined exchange (SDX). Contrary
to how it may seem, however, merely operating SDN switches and a
controller at an IXP does not automatically present a turnkey solu-
tion. SDN is merely a tool for solving problems, not the solution.
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Network programmability

Source: https://commons.wikimedia.org/wiki/File:Cisco-rs1.jpg

• SDN controller: 
programmable control 
plane

• What about the data 
plane?

https://commons.wikimedia.org/wiki/File:Cisco-rs1.jpg


23

Fixed function ASIC

User programmable device!

coded in

The limitation was in the hardware...
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OpenFlow limitations

For every new protocol new 
headers need to be added 
to the OF specification and 
implemented by switch 
vendors

Version Date #Headers

OF 1.0 Dec 2009 12

OF 1.1 Feb 2011 15

OF 1.2 Dec 2011 36

OF 1.3 Jun 2012 40

OF 1.4 Oct 2013 41

OF 1.5 Mar 2015 45
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OpenFlow can be a P4 program!



26

Why data-plane programmability? 
• The device behaves exacly as you want

• Easy to update functionality

• Remove unused features

• See inside the data plane: 
– Telemetry information (queue occupancy, latency, 

time-stamps) can be used while forwarding the 
packets
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#include <core.p4>
#include <v1model.p4>
struct metadata {}
struct headers {}

parser MyParser(packet_in packet, 
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {

state start { transition accept; }

}

control MyVerifyChecksum(inout headers hdr, inout
metadata meta)
{

apply { }
}

control MyIngress(inout headers hdr,
inout metadata meta,

inout std_mtdt_t std_mtdt) {
apply {

if (std_mtdt.ingress_port == 1) {
std_mtdt.egress_spec = 2;

} else if (std_mtdt.ingress_port == 2) {
std_mtdt.egress_spec = 1;

}
}

}

control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
apply {  }

}

control MyComputeChecksum(inout headers hdr, inout
metadata meta) {

apply { }
}

control MyDeparser(packet_out packet, in headers 
hdr) {

apply { }
}

V1Switch(
MyParser(),
MyVerifyChecksum(), 
MyIngress(), 

MyEgress(), 
MyComputeChecksum(), 
MyDeparser()

) main;

import drop_heavy_hitters

import drop_ddos

define intent dropHeavyHitters:

to any

for traffic('any')

apply drop_heavy_hitters

with threshold('more', 20)

define intent dropDDoS:

to any

for traffic('any')

apply drop_ddos

with threshold('more', 5)

Similar-to-English network 
intent language

The complexity of a P4 program

Reproduced from P4.org, “P4 Language Tutorial”, 2018.

Intent-Based 
Networking 
needed
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combined.p4

Intent 1 Intent 2 Intent N

Intent Parser

Policy Builder

Templates 
Repository

P4 Code Generator

Topology 
Manager

Switch Controller

combined.p4

gRPC

States Manager

HH

DDoS

P4I/O
High-Level Diagram

import drop_heavy_hitters
import drop_ddos

define intent dropHeavyHitters:
to any
for traffic('any')
apply drop_heavy_hitters
with threshold('more', 20)

define intent dropDDoS:
to any
for traffic('any')
apply drop_ddos
with threshold('more', 5)

...

M. Riftadi and F.A. Kuipers, “P4I/O: Intent-Based Networking with P4,” 
under submisison.
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And why is this relevant for the Tactile Internet?
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Low-latency challenge

• Congestion – when a network node is trying 
to forward more data than the outgoing link 
can process – causes queuing delay

• Existing congestion control approaches are 
slow to react:
– Transport layer reacts to RTT and/or loss
– SDN is affected by controller-switch delay
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Central + local control

• Central controller – Configures
and monitors paths for different 
service classes

• Local controller – Congestion
detection and reaction in the data 
plane

B. Turkovic, F.A. Kuipers, N. van Adrichem, and K. Langendoen, “Fast network congestion detection and avoidance using P4”, 
Proc. of NEAT 2018.
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Network slicing
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That’s all folks!
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