DEPLOYMENT OF NUCLEAR ENERGY IN DEEP DECARBONIZATION OF THE ENERGY SYSTEM

, KIVI SYMPOSIUM: "NIEUWE KERNENERGY, WAT IS ER VOOR NODIG?" UTRECHT, 28TH OCTOBER 2022

ANDRÉ FAAIJ

DIRECTOR OF SCIENCE, TNO ENERGY TRANSITION DISTINGUISHED PROFESSOR ENERGY SYSTEM ANALYSIS, UTRECHT UNIVERSITY & UNIVERSITY OF GRONINGEN

• innovation for life

through the deployment of BECCS.

nor BECCS are used.

limited societal acceptability for BECCS.

Tho innovation for life 2

2 FUTURE ENERGY SCENARIO'S FOR THE NETHERLANDS; PRIMARY ENERGY SUPPLY MIX

SHARE OF ELECTRICITY IN THE ENERGY SUPPLY

DOUBLING - TRIPLING COMPARED TO TODAY

TNO innovation for life

HYDROGEN RELATIVELY MODEST, BUT...

IMPORTANT ROLE IN THE ENERGY SYSTEM

COSTS OF A SUSTAINABLE ENERGY SYSTEM

LOWER COMPARED TO A SCENARIO WITHOUT A GHG TARGET.

Preconditions:

- All options (need to) contribute!
- Innovation (cost reduction)
- Optimal planning / deployment.

This has about doubled with the Ukraine war resulting price levels for gas and oil

NORTH SEA REGION: BIGGEST LIVING ENERGY TRANSITION LABORATORY IN THE WORLD

source: Tennet

COST OF NUCLEAR ENERGY

TNO innovation for life

200

250

[LCOE electricity production options 2020, source: TNO]

Major issues economic performance nuclear energy

- Construction time and licencing.
- Coverage of societal risks and costs of dismantling.
- Deployment in future electricity market in combination with large shares of intermittant renewables

MSR

SCWR

GFR

LFR

SFR

HTR

0

GenIIILWR

2009 €/MWh LCOE new reactor types [Heek Aliki, 2012]; long term estimates: 5 – 8ct/kWh [ETI, 2020]

150

100

50

DETAILED INTEGRATED ENERGY SYSTEM ANALYSES; IESA-OPT MODEL

/ 2020

Reference scenario (IESA-Opt)

- High VRES potential
- Moderate hydrogen and biomass import potential
- Business as usual demand growth
- No investments in coal and nuclear
- Climate neutrality by 2050
- Moderate electricity trade

Model Solve

Objective Function

Minimize: Sum over all periods: Discounted (Annualized Investments, Retrofittings,

and Decommissionings+Fixed costs+Variable costs +Electricity Imports-Electricity Exports)

Variables

Technological Stocks, Technological Use,

Investments, Retrofittings, Decommissionings,

Flexible Technology Use

Constraints

Hourly energy balance (i.e., power dispatch), daily

energy balance, yearly energy balance, emmission

target, minimum and maximum investments, flexible technology constraints

Direct Outputs

Post-Processing

- 1. Energy system costs
- 2. Technological mix
- 3. Capacity expansion planning
- 4. Hourly power dispatch
- 5. Flexibility demand and supply
- 6. Price duration curves
- 7. Emission levels per technology
- 8. Infrastructure (e.g., cables and pipelines)
- 9. Levelized Cost of Energy (LCOE)
- Other energy system indicators

Nuclear scenario (IESA-Opt)

- Based on the reference scenario
- Allowed investment in nucelar power Gen III in the Netherlands with maximum 9 and 12 GWe of nuclear capacity in 2040 and 2050, respectively.
- Maintain the current nuclear power capacity (0.48) GWe) untill 2050

Four key factors:

- System costs (integral!)
- Uncertainty in costs of technologies
- SMR and flexibility
- Cross border trade

[Fattahi et al., pre-print, 2022 (via Google Scholar)]

o innovation 9 for life

Inputs

- 1. Activitiy demands
- 2. Technological Data
- 2.1. Costs
- 2.2. Potentials
- 2.3. Energy Balance
- 3. Import fuel prices
- 4. Resource potentials
- 5. Demand and VRES profiles
- 6. Electricity trade potentials
- 7. Energy policy landscape

POWER GENERATION MIX

Significant contribution of nuclear Tot total power generation, but Limited impact on the overall mix and Role of wind and solar..

MITIGATION COSTS FOR THE TWO SCENARIO'S

Left: Mitigation costs $(B \in_{2019})$ evolution in the reference and nuclear scenarios. Nuclear scenario mitigation costs increase slightly in 2030 but reduce in the long term. Right: The interpolated cumulative mitigation costs in the nuclear scenario minus the reference scenario. Investments in nuclear power reduce cumulative mitigation costs by 9 B \in in the long term.

for life 11

IMPACT OF VARIATION IN CAPITAL EXPENDITURES

CAPEX FOM VOM FUEL Infrastructure

The realized LCOEs under the nuclear scenario in 2050 for

intermittent renewables and nuclear technologies.

The installed nuclear gen III capacity variations with different nuclear interest rates and capital costs.

Straight lines refer to 2050 investments, while dashed lines indicate the investments in 2030.

INSTALLED NUCLEAR GENERATION CAPACITY (GW) RELATED TO VARIATION IN VRES CAPEX AND NUCLEAR CAPEX

VRES CAPEX	Nuclear gen III capacity [GWe] in 2050											
Highest	12.5	12.5	12.5	12.5	12.5	9.5	7.6	3.7	3.5	3.5	1.2	0.5
High	12.5	12.5	12.5	9.5	9.4	8.2	4.5	3.5	3.5	1.3	0.5	0.5
Mid	12.5	12	10.9	9.6	8.9	7.7	3.9	3.5	1.2	0.5	0.5	0.5
Low	12.5	12	10.9	9.8	8.8	7.7	4	2.1	0.5	0.5	0.5	0.5
Lowest	12.5	12	10.9	9.8	8.7	8	4	1.9	0.5	0.5	0.5	0.5
	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10

Nuclear CAPEX [B€/GW]

Installed nuclear generation capacity with variations in the VRES capital costs against nuclear capital costs.

The innovation 13

- Investing in nuclear power can reduce the mitigation costs of the Dutch energy system by 1.6% and 6.2% in 2040 and 2050, and 25% lower national CO₂ prices by 2050.
- **)** However, given all the uncertainties around the cost and technological assumptions, this cost reduction is not significant.
- In addition, this study has shown that lower financing costs (e.g., EU taxonomy support) considerably reduce the relevance of nuclear cost uncertainties on its investments.
- The economic feasibility of national nuclear power investments can vary considerably depending on the cross-border electricity trade assumptions.
- Inder the specific assumptions of this study, nuclear power can play a complementary role in supporting the Dutch energy transition from the sole technoeconomic point of view.

THE DEBATE ON NUCLEAR ENERGY IN THE NETHERLANDS; **ADVICE OF THE COUNCIL ON LIVING ENVIRONMENT AND INFRASTRUCTURE (RLI) PLEADS FOR THOROUGH ANALYSES AND SOCIETAL DEBATE**

On the following dimensions:

- Energy security and reliability of the energy system
- Affordability
- > Safety
- **)** Sustainability
- Intergenerational justice

And the following key questions

- **)** Is nuclear energy:
- > -accelerating the energy transition or not? (realisation time and capacity, lesser energy infrastructure issues)
- > going to be realized/implemented in such a way that the lower part of the cost range is achieved?
- > going to avoid conflicts (e.g. spatial) or increase them (issues on safety and storage of nuclear waste)

