Extracting carbon from seawater

Indirect CO₂ capture

Vojtech Konderla David Vermaas

15th December 2022

Driving force

Driving force

 $\widetilde{\mathbf{T}}$ UDelft

How can we reach carbon-neutral society when we are still using fossil fuels?

3 *[1] European Environment Agency, https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer [2] EU vision on 'Going Climate-neutral in 2050*

Driving force

Batteries instead of jet fuel? Biomass instead of petrochemicals?

We need negative $CO₂$ emission technology

Renewable energy sources and process intensification are both not good enough

How can we reach carbon-neutral society when we are still using fossil fuels?

 $\widetilde{\mathbf{T}}$ UDelft

[1] European Environment Agency, https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer [2] EU vision on 'Going Climate-neutral in 2050

Carbon cycle

Carbon cycle

Flue gas

Negative emission in combination with biomass

Flue gas Air

Negative emission in combination with biomass

Needs to filter full atmosphere each 35 years

Negative emission in combination with biomass

Needs to filter full atmosphere each 35 years

Flue gas Air Air Seawater

- **Concentration 150x higher** than in air
- **Lower TRL than air capture**

Where is our $CO₂$?

[1]

Flue gas Air

Negative emission in combination with biomass

UDelft

Needs to filter full atmosphere each 35 years

Seawater

- **Concentration 150x higher** than in air
- **Lower TRL than air capture**

using:

Electrochemical methods

- **Direct use of electricity**
- **Modular**
- **I**sothermal

11

Atmosphere and ocean are in equilibrium

Atmosphere and ocean are in equilibrium

Removing CO₂ from the ocean means removing CO₂ *indirectly from the air*

Seawater carbon capture – pH swing

 $\widetilde{\mathbf{T}}$ l

UDelft

 $H^+ + HCO_3^- \leftrightarrow CO_2 + H_2O$ $HCO_3^- + OH^- \leftrightarrow CO_3^{2-} + H_2O$

Seawater carbon capture – pH swing

 $DIC = [CO_{2,(aq)}] + [HCO₃⁻] + [CO₃² -]$

UDelft

pH swing can be achieved by

- Water electrolysis
- Redox active carriers
- Bipolar membranes

...

 $H^+ + HCO_3^- \leftrightarrow CO_2 + H_2O$ $HCO_3^- + OH^- \leftrightarrow CO_3^{2-} + H_2O$

Seawater carbon capture – pH swing

 $DIC = [CO_{2,(aq)}] + [HCO₃⁻] + [CO₃² -]$

 $\widetilde{\mathbf{T}}$ UDelft

 $H^+ + HCO_3^- \leftrightarrow CO_2 + H_2O$ $HCO_3^- + OH^- \leftrightarrow CO_3^{2-} + H_2O$

16

3 compartment Bipolar Membrane Electrodialysis (BPMED)

3 compartment Bipolar Membrane Electrodialysis (BPMED)

UDelft

3 compartment Bipolar Membrane Electrodialysis (BPMED)

Aspen modeling results

• Results are scaled up for the size of the desalination plant \sim 137 kg/h CO₂, 177 kg/h CaCO₃

Aspen modeling results

• Results are scaled up for the size of the desalination plant \sim **137 kg/h CO2, 177 kg/h calcite**

Power consumption *=f(current density)*

Number of stacks *=f(current density)*

Total power consumption

■ Sum of the electrochemical and pumping power

CO₂ energy consumption:

- **3 comp.:** 249 kJ/mol
- **2 comp.:** 303 kJ/mol
- Digdaya *et al.* 2020: 155 kJ/mol[1],*
- Eisaman *et al.* 2012: 242 kJ/mol[2],*

CO2 & CaCO3 energy consumption

- **3 comp.:** 158 kJ/mol
- **2 comp.:** 193 kJ/mol
- Results are scaled up for the size of the desalination plant \sim 137 kg/h CO₂, 177 kg/h CaCO₃

** Does not include pumping power, considers regular seawater*

[1] Digdaya, I.A., Sullivan, I., Lin, M. et al. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nat Commun 11, 4412 (2020) [2] Eisaman, M. & Parajuly, Keshav & Tuganov, Alexander & Eldershaw, Craig & Chang, Norine & Littau, Karl. (2012). CO2 extraction from seawater using bipolar membrane electrodialysis. Energy Environ. Sci.. 5. 10.1039/C2EE03393C.

Total power consumption

- **Natural gas:** 400 kJ/mol *electricity/CO₂*
- **Thermodynamic minimum: 20 kJ/mollengler**

▪ Sum of the electrochemical and pumping power

CO₂ energy consumption:

- **3 comp.:** 249 kJ/mol
- **2 comp.:** 303 kJ/mol
- Digdaya *et al.* 2020: 155 kJ/mol[1],*
- Eisaman *et al.* 2012: 242 kJ/mol[2],*

CO2 & CaCO3 energy consumption

- **3 comp.:** 158 kJ/mol
- **2 comp.:** 193 kJ/mol
- Results are scaled up for the size of the desalination plant \sim 137 kg/h CO₂, 177 kg/h CaCO₃

** Does not include pumping power, considers regular seawater [1] Digdaya, I.A., Sullivan, I., Lin, M. et al. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nat Commun 11, 4412 (2020) [2] Eisaman, M. & Parajuly, Keshav & Tuganov, Alexander & Eldershaw, Craig & Chang, Norine & Littau, Karl. (2012). CO2 extraction from seawater using bipolar membrane electrodialysis. Energy Environ. Sci.. 5. 10.1039/C2EE03393C.*

BPM limits the energy consumption

BPM thermodynamic voltage: $V_{BPM} = 0.059 \Delta pH_{BPM}$, however, in practice water splitting starts only at 0.6V

In-situ CaCO₃ mineralization using 2 compartment BPMED with 10 BPMs

BPM limits the energy consumption

Del

BPM thermodynamic voltage: $V_{BPM} = 0.059 \Delta pH_{BPM}$, however, in practice water splitting starts only at 0.6V

- BPM consumes approximately 90% of the electrical energy
- \triangleright Market for BPMs is still in early stages
- Water splitting catalyst inside the BPM needs to be improved

[1] Sharifian, R., et al. "Oceanic carbon capture through electrochemically induced in situ carbonate mineralization using bipolar membrane." Chemical Engineering Journal 438 (2022) [2] Blommaert, Marijn A., et al. "Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems." *ACS Energy Letters* 6.7 (2021)

Number of BPMED stacks

,where 1 cell stack contains 210 compartments with 0.5x0.5 m2 active area

Results are scaled up for the size of the desalination plant \sim 137 kg/h CO₂, 177 kg/h CaCO₃

▪ **3 comp.:**

- **Design requires an additional dilute compartments**
- 210 compartments stack corresponds to a pilot scale stack developed at AquaBattery

3 compartment Bipolar Membrane Electrodialysis

 $\widetilde{\mathbf{T}}$ UDelft

Conclusion – challenges to overcome

- Cost-efficient renewable electricity (Fluctuations are alright)
- **Finding Suitable coastal location(s)** : operation (ocean movements, carbon cycle) but also $CO_{2.00}$ storage
- Monitoring, reporting and verifying (MRV): Effect on ecosystem + geography
- **Technology: fouling, pumping, pretreatment, low TRL, LCA**
- Upscaling: Permit(s), Funding

Dutch Indirect Carbon Capture start-up

Ir. Vojtech Konderla TU Delft Research engineer

 $\widetilde{\mathbf{T}}$ UDelft

Dr. Ir. David A. Vermaas TU Delft associate professor

Ruben Brands (MBA & LL.M) Business & corporate law

Dr. Ir. Rose Sharifian Former TU Delft PhD

Upscaling and future view

