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Our work at TU Delft
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Section of Railway Engineering




Section of Railway Engineering

e 2 Professors

« 3 Assistant professor

» 6 Postdoc and researchers

« 19 + 2 PhD students

» 3 lab researchers and technicians
= 5 visiting researchers

« 1 Secretary
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Teaching
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Teaching

= Specialization of Railway Engineering

e Starting from academic year 2015 — 2016:
 Railway operations and control
 Elements of Railway Engineering

* Wheel-ralil interface & contact mechanics
 Design & maintenance of railway vehicles
* Transport safety

 Railway asset management

» Mechanical & material engineering for rail
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Teaching

https://www.youtube.com/watch?v=gxXW4eXT4ydA

ﬂ Courses ~ Programs - Schools & Partners About ~ | Search: O,‘ Sign In

Home = All Subjects > Engineering > Railway Engineering: An Integral Approach

Railway Engineering: An Integral

Approach Starts on October 11, 2017
Discover the science and complexity behind the m
exciting world of metro, tram and railway

SyStemS- | would like to receive email from Delft

University of Technology (TU Delft) and learn
about other offerings related to Railway
Engineering: An Integral Approach.
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Teaching

Home > All 5u

Bil from Delft
U Delft) and learn
ted to Railway
pproach.
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Research

e Contact mechanics

e Train-track/S&C interaction
* Rolling contact fatigue

= Condition monitoring

 Big Data & asset management
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Research

e Contact mechanics

e Train-track/S&C interaction
» Rolling contact fatigue

e Condition monitoring

* Big Data & asset management
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Lab facilities

» CTO train
= Train-track interaction test rig
e .... others

https://www.youtube.com/watch?v=0NJrR8e60aQ
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Lab facilities
e CTO train

Studiojoz
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Lab facilities

» Train-track interaction test rig
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Railway Infrastructure
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Railway Infrastructure

Railway Infrastructure

@ Safety system:

signal, interlocking

@ Energy System:

feeding power supply

@ Communications:
Speakers, information board, applications

@ Support:

subsoil, cables and wires

@ Crossing:

Tunnels, level crossing, fences

@ Guiding:

Rail, switches, joints

Measurements:
Infradata from fixed and on-board sensors

(®) Rolling stock:

Passengers and freight

@ Transfer:

Station, elevators

3
TUDelft 17
]




Railway Infrastructure

Railway Infrastructure

@ Safety system:

signal, interlocking

@ Energy System:

feeding power supply

@ Communications:
Speakers, information board, applications

@ Support:

subsoil, cables and wires

@ Crossing:

Tunnels, level crossing, fences

@ Guiding:

Rail, switches, joints

Measurements:
Infradata from fixed and on-board sensors

(®) Rolling stock:

Passengers and freight

@ Transfer:

Station, elevators

3
TUDelft 18
]




Big Data in Railway Infrastructure:
Some examples
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In The Netherlands

Almost no time for monitoring and
maintenance ®
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Example 1:
Axle box acceleration
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ABA Measuring System

Measurements
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Defect detection in rails

Initiating squat

Severe Two squats at a thermite weld

Wheel burns

Damaged welds

Corrugation

Bolt tightness

Insulated joint with
plastic surface
degradation
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ABA at Moderate and Severe Squats

3000
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e 200 - 400 Hz
i 3° (dominant)

2000
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Frequ
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500

Position, m Position, m Position, m

Z. Li, M. Molodova, A. Nufiez, and R. Dollevoet, “Improvements in axle box acceleration measurements for the detection of light
squats in railway infrastructure”. IEEE Transactions on Industrial Electronics 62(7): 4385-4397, 2015.
DOI:10.1109/TIE.2015.2389761
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ABA Measurements at Light Squats

Frequency, Hz

§

= 200 - 400 Hz

Position, m Position, m

» * 1000 - 2000 Hz

Frequency. Hz

Position, m Position, m Position, m Position. m

Z. Li, M. Molodova, A. Nufiez, and R. Dollevoet, “Improvements in axle box acceleration measurements for the detection of light
squats in railway infrastructure”. IEEE Transactions on Industrial Electronics 62(7): 4385-4397, 2015.
DOI:10.1109/TIE.2015.2389761
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ABA Measurements at Light Squats

At least 25600 Hz for sampling

(more than 7000 km of rails)
clUldl ADA = ! | i 'H f |
of several terabytes
" i i i . = 1000 — 2000 Hz
At least 16 sensors to assure impact, .
vertical-longitudinal, left-right rail, g
trailing leading wheel

-1 0 14 1] 1

| Volume

= 200 - 400 Hz

E 0
Position, m Position, m Position, m Position. m

Z. Li, M. Molodova, A. Nufiez, and R. Dollevoet, “Improvements in axle box acceleration measurements for the detection of light
squats in railway infrastructure”. IEEE Transactions on Industrial Electronics 62(7): 4385-4397, 2015.
DOI:10.1109/TIE.2015.2389761
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ABA Measurements at Light Squats
At least 25600 Hz for sampling

Monitoring the entire Dutch railway o
(more than 7000 km of rails) .

Volume

Ve dl ADA & ! ] i 'Hm f | 20
Measurements provides a data volume . 200 - 400 Hy
of several terabytes )
. | i i . = 1000 — 2000 Hz

At least 16 sensors to assure impact, . :
vertical-longitudinal, left-right rail, .

tralllng Ieadlng wheel

0

Z. Li, M. Molodova, A. NUfi4 easurements for the detection of light
squats in rail B I G D A I A b 62(7): 4385-4397, 2015.
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Challenges: grinding and

replacement
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Challenges: different speeds

NeTllRail
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Vertical and longitudinal ABA and wavelet power spectrum at a defect,
measured at 80 km/h.
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Challenges: different speeds
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Challenges: massive implementation

trains in operation N eTlRCI“
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Locations of the top 75 places where the ABA signal show largest energy
variations
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Example 2:
Video Image processing
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Detection of rail defects

Feature (F) maps output:
: 92 x 46

Input image F maps 6 classes

100 x50 46 x 23 fo] Normal
) 38x 18 o Weld

F maps of L-squat

®f M-squat

gl — o S-squat Moderate Severe Joint
Doxs 1 ol J0int Squat Squat

2%2 Ooxe 2x2 W4x22x2™8
b "~

Convolution Max-pooling C Mp C Mp Fully-connected

(© (Mp) (F)
4 S. Faghih-Roohi, S. Hajizadeh, A. Nufiez, R. Babuska, and B. De Schutter, “A deep learning approach for detection of rail defects”.
TU D Ift Proceedings of the IEEE World Congress on Computational Intelligence, IEEE WCCI 2016, 2016 International Joint Conference on 35
e Neural Networks (1JCNN), Vancouver, Canada, 25-29 July, 2016, pp. 2584-2589.




Image data

» The dataset consists of 4220 samples, of which 3170 are
normal, and roughly 1000 are defects (surface spots,
crack initiations, squats, head-checks, etc.)

» We train a convolutional neural network model with
80% of the data, and test with the remaining 20% (in 5
folds). Here is the averaged result of the test:

Predicted normal | Predicted defect

Normal samples 635 1
Defects 10 197

Accuracy = 0.9870

%
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False detections (image data)

False positive

False negative

Images from
INSPECTATION
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Hits 2 (image data)

True Positive




Hits 3 (image data)

True Positive




Classification of types

= We also tried to classify the defects into 2 categories of
spots/light vs. medium/severe.

Normal 90
80
70
Light =
» squat 60 3
0 sl
©
S 50 &
o c
=2 Medium =)
F & severe g
squat g
120
Joint 0.00 3.02 5.96 110
' 0
Normal Light Medium & Joint
squat severe squat
% Detected class
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** A big data analysis approach is used to
automatically detect squats from rail
images.
* A Bayesian model is employed to
estimate the failure probability.
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A. Jamshidi, S. Faghih-Roohi, S. Hajizadeh, A. Nufiez, R. BabuSka, R. Dollevoet, Z. Li and B. De Schutter, “A big data analysis approach for rail
failure risk assessment”. Risk Analysis, Volume 37, Issue 8, August 2017, Pages: 1495-1507. DOI: 10.1111/risa.12836
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Architecture of the proposed DCNN model
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A. Jamshidi, S. Faghih-Roohi, S. Hajizadeh, A. NUfiez, R. BabuSka, R. Dollevoet, Z. Li and B. De Schutter, “A big data analysis approach for rail
failure risk assessment”. Risk Analysis, Volume 37, Issue 8, August 2017, Pages: 1495-1507. DOI: 10.1111/risa.12836
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Example 3:
Video Image processing + ABA +
Others
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Dense layer with
ReLU activation

1D convolutional
lavers

+» Video and ABA to detect
squats.

% Other signals for influential
factors used for modelling.

Acceleration, m/s?

Acceleration, m/s?

500 1000 1500 2000 2500 3000 3500 =300
Samples

o 50 1000 1500 2000 2500 3000 3500

Samples

A. Jamshidi, S. Hajizadeh, Z. Su, M. Naeimi, A. Nufiez, R. Dollevoet, B. De Schutter, and Zili Li, “A decision support approach for condition-based
maintenance of rails based on big data analysis”. Under review.
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track superelevation (mm)

train speed profile (m/s)

vehicle effect

train acceleration profile (m/s?) L w

Sccrkrabon, ms
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A. Jamshidi, S. Hajizadeh, Z. Su, M. Naeimi, A. Nufiez, R. Dollevoet, B. De Schutter, and Zili Li, “A decision support approach for condition-based
maintenance of rails based on big data analysis”. Under review.
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Other examples:
Integrated systems and Watson
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Integrated Big Data for freight trains:

e i,

LELEEE Ti F

'F;U Delft https://www.aar.org/report/Pages/R1C2S1.aspx
e
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BV Watson
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Conclusions
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Conclusions

 Big Data is here to stay. “Fancy” algorithms will not
perform 100% if the knowledge of the railway system is
not included explicitly.

» There is a great potential for using Big Data to facilitate
maintenance decisions on Dutch railways. Further
research: head-checks, corrugation, wheel-burns,
Indentations. Self-learning, transfer learning.

« Growth rate of defects should be monitored with
appropriate intervals while maintaining the processing
load within feasible limits.
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Conclusions

By including predictive and robust capabilities in the
decision making, we can give steps towards a
maintenance that “anticipates” rather than only “correct”.

» New paradigms for modelling under Big Data conditions
are necessary to further develop this decision support
method; in order to incorporate, among others, prediction
power and robust capabillities in the decision making.

= Many open challenges.
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