Fusie – zon op aarde

Oil consumption

CO₂ emission

people

barrels

tonnes

Fusie Van belofte naar realiteit

3-4-2013 KIVI NIRIAm Den Haagh

Kernsplijting

$n + {}^{235}U \rightarrow 3n + fragmenten$

deuterium + tritium \rightarrow helium + neutron

Schone energie?

Wind Zon Waterkracht Golfenergie Biomassa Kernsplijting Geothermisch CO₂-opslag

Europe, USA, Japan, China, Russia, S-Korea and India

willen fusie:

Geen CO₂, schoon, veiligheid
Brandstof alom voorradig
Geen proliferatie issue

Nadeel... Fusie is onmogelijk

Europe, USA, Japan, China, Russia, S-Korea and India

willen fusie:

Geen CO₂, schoon, veiligheid
Brandstof alom voorradig
Geen proliferatie issue

Nadeel... Fusie is moeilijk

De 7 onmogelijkheden van fusie

10× heter dan de zon

Zonnevlammen beheersen

Thermische isolatie nagenoeg perfect

Bombardement van neutronen

Brandstofcyclus Tritiumproductie

ITER: 34 landen 15.000.000 onderdelen

10× heter dan de zon

Zonnevlammen beheersen

Verhitting hoog

MAST (Culham, UK)

Onderzoek aan magnetische opsluitingsconcepten

Conceptverbetering gaat door

Progress in fusion

ITER Nett energy gain: $P_{fusion} = 10 \times P_{in}$ Demonstration of technical principles – new regime

JET (and other machines) Break-even: $P_{fusion} = P_{in}$

Emphasis on physics understanding

Thermische isolatie nagenoeg perfect

Gyro code; Jeff Candy (GA)

Hete plasma's hebben een rijke structuur

Gyrokinetic Simulations of Plasma Microinstabilities

simulation by

Zhihong Lin et al.

Science 281, 1835 (1998)

Transport door plasma fluctuaties

Lagere performance

1982 ASDEX: ontdekking van high confinement mode.

Ontdekking van interne transport barrieres

Turbulentie controle

Resonance

Turbulentie controle

Bart Hennen

Turbulentie controle

Excitatie en onderdrukking van een instabiliteit

Hoge T, stabiele opsluiting, goede thermische isolatie

Hoge T, stabiele opsluiting, goede thermische isolatie

Thermische belasting

Scrape-off laag ~ 2 cm dik

20mm

Vermogensdichtheid 1 GW/m²

Hoe kan 1 GW/m² worden gereduceerd tot hanteerbare waarde?

Keuze van de geometrie van de divertor

Straal 90% van het vermogen weg

'Ontkoppel' het plasma in de divertor (T<10 eV)

Plasma wand materialen: vele uitdagingen

Erosie

Redepositie

Tritium retentie

Smelten

Plasmavervuiling

Materiaalkeuze: Koolstof, Wolfraam, Beryllium.

Belangrijke randvoorwaarden: neutron fluentie activatie

Alcator C-Mod (MIT)

Depositie van koolstof in TEXTOR (FZ-Julich)

Erosie/redepositie

Reflectivity for eroded mirrors

V. Voitsenya, Rev. Sci. Instrum. 76 (2005) 083502.

Material eroded away elsewhere can be redeposited on mirrors

M. Rubel, 18th ITPA Diagnostics meeting

Courtesy: A. Litnovsky

High-power linear plasma generators at FOM (NL):operationeel:Pilot-PSIIn aanbouw:Magnum-PSI

MAGNUM-PSI

First super-conducting linear plasma simulator: steady state 3T

MAGNUM-PSI

MAGNUM-PSI

Bombardement van neutronen

Hoge deeltjesfluxen JET

6/9997.66

50 × hogere ionenflux

5000 × hogere ionenfluentie

> 10⁵ × hogere neutronenfluentie

Nieuwe fenomenen voor diagnostieken

Magnetic coils

- Radiation Induced Conductivity (RIC)
- Radiation Induced Electric Degradation (RIED)
- Radiation Induced Electromotive Force (RIEMF)

Bolometers

- RIC
- Nuclear Heating
- Sputtering
- Contact degradation
- Differential swelling
 and distortion

Pressure gauges

- RIC
- RIED
- Filament aging

Neutron cameras

- Noise due to γ -ray, proton, α
- Radiation damage on solid state detectors

Optical diagnostics *Mirror*

- Deposition, erosion
- Swelling, distortion *Window*
- Permanent transient absorption
- Radioluminescence
- Swelling, distortion

Impurity monitoring Mirror and windows

- same as above
 Fibers
- Permanent transient absorption
- Radioluminescence
Stralingsgeinduceerde absorptie en emissie

Stralingsgeinduceerde Absorptie (RIA) door neutronenstraling

Stralingsgeinduceerde Emissie (RL or RIE) van twee typen quartz fibers in gammastralingsveld van 700 Gy/s

Refractieve componenten kunnen niet dicht bij plasma worden gebruikt

Transmutatie

Transmutatie was een issue voor weerstandsbolometers met Au meanders (transmutatie naar Hg)

Goede resultaten met Pt meanders

Materiaalontwikkeling

IFMIF - International Fusion Materials Irradiation Facility

Brandstofcyclus Tritiumproductie

Tritium moet minstens 1000 × worden gebruikt zonder gevangen te worden

Plasma

Pb-17Li outlet

First wall

ITER: 34 landen 15.000.000 onderdelen

ITER in 2011 - bouw is onderweg

Seismic Isolation Pads

Poloidal Field Coil Winding Facilicity Building

ITER Headquarters opened 15 October 2012

ITER vacuum vessel – more heavy than the Eiffel tower

Neutral Beam heating

ITER cryogenic system

Superconducting cables

Bruker Energy &

Supercon Technologies

Chepetsk Mechanical Plant

Hitachi

Jastec

::

Kiswire Advanced Technology

Luvata

Oxford Superconducting Technology

Western Superconducting Technology

Cooling system

ITER is een wereldwijd project

Bouwkosten: 12 miljard Euro Eerste experimenten: 2020 Energieproductie: 500 MW Energievraag: 50 MW

Russian Federation

nina Ko

De toekomst?

2000 2010 2020 2030 2040

TER

DEMO

Fusion power

Aziatische landen hebben zeer agressief programma

De 7 onmogelijkheden van fusie

ITER

OK

ITER

ITER

www.fusie-energie.nl

na

Dank aan: Niek Lopes Cardozo Gieljan de Vries

Wanneer komt het, wat kost het?

Andere vormen van fusie

Economie – wat bepaalt de kostprijs?

Komt fusie op tijd?

Groei van diverse energiebronnen (G.J. Kramer, Nature 2009)

Fusie tov andere bronnen

Courtesy N.J. Lopes Cardozo

Veiligheid

Fusie is géén kettingreactie

Brandstof voor paar seconden

Veiligheid

Waterstof en helium zijn ongevaarlijk

Géén vervoer radioactieve stoffen tijdens bedrijf

Géén lang-levend kernafval

Géén uitstoot broeikasgas

Economie: electriciteitskosten

Most of the plant is conventional, not fusion specific!

Economie: electriciteitskosten

Samenstelling van directe kosten

Brandstofkosten bedragen slechts 0.5% !

Economie: electriciteitskosten Kosten voor diverse componenten

Economie: electriciteitskosten

The plant must be an affordable, reliable, maintainable energy source and all of these factors are contained in the cost of electricity:

coe =
$$[C_{AC} + (C_{O&M} + C_{SCR} + C_F) * (1 + y)^{Y} + C_{D&D}$$
, where
(8760*P_E* P_f)

C_F is the annual fuel costs

y is the annual escalation rate

Y is the construction and startup period in years

P_E is the net electrical power (MWe)

P_f is the plant capacity factor

C_{D&D} is the annual decontamination and decommissioning converted to mills/kWhr

Major Effect
Economie: electriciteitskosten

Schaling van kosten met capaciteit

$$\label{eq:coe} coe \propto \left(\frac{1}{A} \right)^{0.6} \frac{1}{\eta_{th}^{-0.5}} \frac{1}{P_e^{-0.4} - \beta_N^{-0.4} N^{0.3}}$$

A: Availability

- η_{th} : thermodynamic efficiency β_N : normalized plasma pressure
- N: normalized plasma density

Economie: beschikbaarheid

Operational Time

Availability =

Operational Time + Scheduled Down Time + Unscheduled Down Time

Operational Time is the power production time over a set period of time.

Scheduled Down Time is the sum of regularly scheduled maintenance periods for the power core, other reactor plant equipment, and balance of plant equipment

Unscheduled Down Time is the summation of maintenance times to repair unexpected operational failures that cause the plant to cease power production

(Power Plant Conceptual Study)

Economie: beschikbaarheid

Snelle warmteverliezen beperken de levensduur van ITER

- Transient heat losses of 1 ms duration are caused by edge instabilities (so called ELMs)
- Large ELMs are unacceptable
- Mode of Operation should avoid ELMs

Economie: beschikbaarheid

Beschikbaarheid moet groeien via ITER, DEMO tot een fusie-elektriciteitscentrale

Andere vormen van fusie

Traagheidsopsluiting (laserfusie)

Magnetized Target Fusion

Muon-gekataliseerde fusie

Confusie

