

SENSORS FOR AIR QUALITY MONITORING

MARCEL ZEVENBERGEN
SR. RESEARCHER GAS AND ION SENSORS

Health and Lifestyle as Application Driver

IMPROVE

ENABLE

ILLNESS

HEALTH MANAGEMENT MANAGEMENT

What if these systems could sniff?

From Body to Personal Area Network

Health status

Product recognition

Open spaces

imec

© IMEC 2015

EETIMES: 2015 YEAR OF THE AIR QUALITY SENSORS

AIR QUALITY GADGETS ARE BOOMING

Cube sensors

Air quality egg

Netatmo

- T, RH
- Pressure, noise, light
- T, RH
- Pressure, noise, light
- T, RH
- Pressure

VOCs (CO₂ equivalent)

- VOCs, NO₂, ozone,
 particles
- CO_2

All qualitative indication of air quality: good, medium or bad

IS GOOD, MEDIUM, OR BAD SUFFICIENT?

Clear recommended levels of exposure

Pollution	Recommendations	
CO ₂	8 hrs 15 min	5000 ppm 30000 ppm
СО	24 hrs I hr	10 ppm 25 ppm
NO ₂	Annual mean I hr	20 ppb 100 ppb
O_3	8 hrs	20 ppb
Formaldehyde	8 hrs I hr	40 ppb 100 ppb
Toluene	24 hrs 8 hrs	0.6 ppm 4.0 ppm
Benzene	As low as possible	
Napthalene	24 hrs	I.9 ppb

Source: Health recommendations from Canada, WHO

Imec vision

IMEC SENSOR PLATFORMS

Ion Sensor

'Health patch'

Gasses

(Ionic Liquid): Ethylene, CO₂,...

Fruit monitoring

Air quality monitoring

GaN sensor: NO₂, NO,..

Environmental monitoring

AIR QUALITY SENSORS TODAY

Form factor suitable for indoor air quality monitoring:

- Electrochemical gas sensors
- NDIR sensors
- Metal oxide sensors

Not about lab equipment (GC-MS, Flame ionization, Laser based spectroscopy Chemiluminescence)

ELECTROCHEMICAL GAS SENSORS

Pros

- low power consumption (< 1 μ W)
- Selective (voltage, WE material)
- Sensitive down to ppm range

Cons

- large form factor (liquid electrolyte)
- evaporation → drift, lifetime ~1-2 yrs
- electrochemically active gasses (CO, H₂S, NH₃)

Electrochemistry

- apply potential to working electrode
- oxidation/reduction of analyte at electrode
- electron transfer to/from electrode
- inverse reaction at counter electrode
- current depends on analyte concentration

NDIR SENSORS

- Some gasses absorbs IR light, e.g. CO₂ and CH₄
- IR light source is directed through sample and absorption is measured
- Components of NDIR sensor:
 - Light source
 - Optical filter
 - Photodiode detector
 - Reaction volume / optical pathway

Pros:

- Good selectivity: gas absorbs light only at specific wavelengths, but requires specific optical filter in front of detector
- Long lifetime (>5 yrs)

Cons:

- Light source needed → high power: typically >200mW. Light source needs warm-up & stabilization time (1-10 min)
- Form factor: high sensitivity only if light can interact with gas over long pathway: typically >5 cm
- Concentration of CO_2 in air depends on temperature and pressure \rightarrow p and T compensation needed

METAL OXIDE GAS SENSORS

- At elevated temperature O_2 as adsorbed at metal oxide surface
- Free electrons are transferred to $O_2 \rightarrow$ resistance increase
- Gasses interact with surface O₂
 → resistance decreases

Pros:

- Sensitive & inexpensive
- Small form factor

Cons:

- High power consumption (> 200 mW due to continuous heating)
- Cross-sensitive (LPG, methane (CH₄), carbon monoxide (CO), other hydrocarbons)

Metal oxide sensors are typically used in air quality sensors Cross-sensitivity is expected!

COMPARISON

	ECHEM	NDIR	MOX
Sensitivity (ppm-range)			
Sensitivity (sub ppm)			
Selectivity			
Life-time			
Form-factor			
Power consumption			
Cost			

No perfect sensor!

EXPOSURE TO GASSES

CO₂- EXPOSURE LIMITS

CO2 %	Effect
20.0	Death within a few seconds
10.0	Convulsion, Unconsciousness, Death
7.0	Dizziness, Vomiting, Headache, Reduced blood supply to brain
4.0	IDLH -Immediate Danger to Life and Health
3.0	Normal exhale concentration; increased breath and pulse rates
1.5	Shortness of breath possible
0.5 (5000 ppm)	Maximum for working conditions (Time Weighted Average <5000 ppm for 8 hrs)
0.1-0.3 (1000 – 3000 ppm)	High values in office
0.04 (400 ppm)	Fresh air

CO₂ LEVELS AND HEALTH

- Elevated CO₂ concetration of 1000 ppm above increase sick leave of 10 tot 20 procent (Shendell et al., 2004).
- Effect on learning

TNO recommends CO₂ level < 800 ppm

NDIR CO₂ SPECIFICATIONS

- Range: 0 10000 ppm
- Accuracy: ± 50 ppm $\pm 5\%$ of reading
- Life-time > 5yrs
- Recalibration possible with background
 CO₂ concentration (400 ppm)

Good enough for indoor air quality monitoring!

Optical path & power consumption hinders further minitiarization...

IONIC LIQUID BASED CO2 SENSOR

Combining thin-film technology & ionic liquids

IONIC LIQUID BASED CO₂ SENSOR Combining thin-film technology & ionic liquids

Unprecedented control of ionic liquid film

Inkjet printed film of IL Corner filling

NO₂- EXPOSURE LIMITS

NO ₂ (ppb)	Effect
200-300	 Avoid all outdoor exertion: People with lung disease, such as asthma Children and older adults Everyone else should limit outdoor exertion.
150-200	Avoid prolonged outdoor exertion: • People with lung disease, such as asthma • Children and older adults Everyone else should limit prolonged outdoor exertion
100-150	Limit prolonged outdoor exertion: • People with lung disease, such as asthma • Children and older adult
50-100	Individuals who are unusually sensitive to nitrogen dioxide should consider limiting prolonged outdoor exertion.
0-50	No health impacts are expected when air quality is in this range.

Source: EPA

WHO guidelines: 20 ppb annual mean /100 ppb 1-hour mean

Precursor for ozone and nitrate particle formation

AIR QUALITY (NO₂) MONITORING STATE OF THE ART EXAMPLES

Absorption tubes

- Sampling time:1 month
- Needs chemical analysis

Electrochemical

- Expensive
- Not very small
- > 20 ppb

NOx lambda sensor

- Exhaust sensor
- High temp
- ppm level

Chemiluminescence analyzer

- High power
- Large and very expensive

There is a need for small but sensitive NO₂ sensors

GAN SENSOR

Available today

- ▶ NO2, NO; ppb sensitivity
- Miniaturized sensor on Si
 - 8" process flow
- Hand-held sensor demo with readout
- Trial test results in outdoor environment

FULL WAFER DEVICE FABRICATION

8 inch wafer GaN-on-Silicon technology

GAN SENSORS: EXTENSION TO OTHER GASSES

- Functionalization with polymers, ionic liquids and metalorganic framework
- Usable for inorganic gasses- H₂, O₃, CO₂, NH₃
 and Volatile Organic Compound (VOC) BTX, Formaldehyde

PARTICLE MATTER

pm I 0: particles smaller than I 0 μ m \rightarrow coarse particles

- Reach trachea (upper throat) or the bronchi
- ► EU regulation: max 50 μ g/m³ \rightarrow 38 particles/liter

pm2.5: particles smaller than 2.5 μ m \rightarrow fine particles

- Reach the alveoli in the lungs
- ► EU regulation: max 25 μ g/m³ \rightarrow 1200 particles/liter

pm0.1: particles smaller than 0.1 μ m \rightarrow ultra-fine particles

- ► Usually exhaled, but can pass cell membranes and get into the blood stream → effects unclear & more research
- Currently no air quality standard for pm0.1 (!)

 Some sensors available based on light scattering

CONVENTIONAL POLLEN DETECTOR

- ▶ Diameter range 6-100µm
- Concentrations:

- Low: < 30 pollen/m³

- Moderate: 30 to 49 pollen/m³

High: 50 to 149 pollen/m³

Very High: > 150 pollen/m³

► Air flow of I L/min at low concentration → I pollen every 30 sec

Burkard volumetric spore trap

- ► 10 L/min airflow
- Microscope slide with grease per two hours
- Counting a slide takes more than one hour

The Netherlands:

- 2 stations (!)
- Rotating roll with sticky tape for one week
- Counting once per week (one sample accounts for I day)

WIRELESS SENSOR NETWORK

INTERNET OF THINGS & AIR QUALITY

IOT RADIO APPLICATION DOMAINS

Porret, A.-S. Wireless sensor networks / iot: An overview of wireless technologies.

OPEN ACCESS IS KEY!

For further information:

Marcel.zevenbergen@imec-nl.nl

