

EU Power Roadmap 2050

How to get to a prosperous, low-carbon Europe

Frits Verheij KIVI NIRIA + Utrecht Sustainability Institute April 16, 2013

The changing world of energy

Macro trends driving change

Complexity

Globalisation

Energy transition

The energy transition playing field

The energy transition is taking shape in the context of political, technological and economic trends.

Political

Political trends reflect the major elements of energy policies.

- Liberalization, Gas & Electricity Directives (and related legal and regulatory framework and arrangements)
- Regional integration and harmonization
- Climate policy (support of renewable energies, CO2 emission trading, energy efficiency)
- Security of supply

Technological

Technological trends are mainly driven by the climate policy and technological progress.

- Enhancement of renewable technologies
- Increasing efficiency (conventional generation)
- End-use energy efficiency
- Network technology (DC)
- Electric vehicles
- Dispersed generation
- Smart metering / smart grids
- Energy storage

Economic

Economic trends are mainly driven by general economic development, sector specifics and energy policy.

- Aging assets & replacement needs
- Increasing regional trade but still fragmented markets
- Demand growth
- Regional harmonization
- Corporate consolidation
- Convergence of gas and electricity markets

Electricity generation by fuel and region in IEA's New Policies Scenario in 2035 vs. 2008 (WEO 2010)

Note: For each region, the largest source of electricity generation in 2008 and 2035 is denoted by its percentage share of the overall mix.

Share of renewable energy sources in electricity generation

Key pointDiversification of fuels and increased use of low-carbon sources in the 2DS achieves a
high degree of decarbonisation in electricity generation by 2050.

Source: IEA Energy Technology Perspective from 2012 (June 11)

From fossil fuels to renewables

Concerns about our global environment

Europe wants to be less dependent on energy imports

EU Energy policy development

Europe's focuses

 Clear distinction between public and private activities: unbundling

 Competitiveness of Europe in global market: sustainability

Empowering customers: smartening

Smartening

The scale, and the priority of the business is shifting ...

 Europeanization: increase of interconnection capacity and of crossborder trading; cooperation between European industries and institutions

 Decentralization: local energy (DG); new initiatives from small companies, citizens, and municipalities; innovative business models

... and dependency on data in a digital world is increasing

- Both work and private life has become digitalized which offers many advantages ...
- ... however, also creates larger dependencies on data or power interruptions

Many developments influencing the energy transition system

ESCALATING CONSUMER EXPECTATIONS

INTERMITTENT GENERATION

ADVANCING TECHNOLOGY

CLIMATE CHANGE

DEMAND GROWTH

DECLINING FOSSIL FUEL SUPPLIES

NIMBYISM

NATURAL GAS

MAINTAIN RELIABILITY

SECURITY THREATS

RENEWABLE INTEGRATION

POPULATION GROWTH

AGING ASSETS AND WORKFORCE

HOW DO WE GET THERE FROM HERE?

Europeanization: One internal market, decarbonization

80% Decarbonization overall means nearly full decarbonization in power, road transport and buildings

Power demand will go down due to higher efficiency and up due to additional demand from transport and building heating

Power demand will go down due to higher efficiency and up due to additional demand from transport and building heating

EU-27 plus Norway and Switzerland power demand, TWh per year

1 Electrification of 100% LDVs and MDVs (partially plug-in hybrids); HDVs remain emitting ~10% while switching largely to biofuel or hydrogen fuel cells 2 90% of remaining primary energy demand converted to electricity (heating/cooling from heat pumps); assumed 4 times as efficient as primary fuel 3 10% of remaining primary energy demand for combustion converted to electricity (heating from heat pumps); assumed 2.5 times as efficient as primary fuel

Additional 850 TWh/yr of production is required by 2020, and even 4,200 TWh/yr in 2050

EU-27 plus Norway and Switzerland, TWh¹

A combination of solar & wind is beneficial for balancing purposes

Grid capacity reduces variability in both daily & seasonal demand fluctuations

Regional demand variation from average over the year

Regional demand variation from average per hour on weekend day

Inter-regional transmission requirements

The rate of grid investments compared to historic levels

20% DSM

An EU approach requires about 40% less reserve capacity

Curtailment is kept low through grid expansion and back-up capacity

Demand response can reduce grid and back up investments by 20–30%

Optimized, DR assumptions: Baseline - 0%, 40, 60 & 80% RES - 0% to 20%

The cost of the decarbonized pathways and the baseline are likely to differ less than \in 250 per year per household

Capital for power generation would more than double in the next 15 years

Efficiency and fuel shift could result in a lower energy bill on the long term

EU Roadmao 2050 April 16, 2013 NOTE: Energy prices are a weighted average of prices faced by consumers weighted by the shares of consumption of different fuels

About 400,000 jobs are created in clean tech, versus potentially 250,000 job losses in fossil fuel supply chains

Jobs from low-carbon power sector

Jobs from efficiency and fuel shift 📲

Jobs lost from reduction of petroleum, gas and oil

EU Roadmao 2050

April 16, 2013

Power perspectives 2030

Current plans for 2020 are an adequate first step

Transmission grid needs to be extended by another 47% in the next decade

Higher shares of RES is technically possible at similar cost

Demand response and energy efficiency make a real difference in overall cost

Decentralization: Flexibility, cooperation, interoperability, consumer participation

Flexibility of our energy system

- Fast controllable power generation, including curtailment of e.g. wind power
- More grid capacity, including interconnection capacity, and crossborder trading
- Energy storage, small-scale and large-scale systems and services
- Smart local energy, including integration of DG, demand response, and active participation of end-users

Cooperation, e.g. between energy industry, housing & transportation

- Significant reduction in CO₂ emissions globally (e.g. in Europe 80% by 2050)
- Electricity makes up half of our total energy demand
- Energy use is reduced overall
- Renewable energy sources compose the majority of our portfolio
- Fossil fuels are used in the most efficient and clean way possible

Interoperability

Interoperability

Consumer participation

Ultimately moving to Smart Energy Cities

New Market Roles

'Yellow is the new green'

Concluding remarks

Energy Transition	 From a centralized, one-directional energy system To a partly decentralized, two-directional system
Energy Sector	 The future energy system will embrace Automotive industry and transportation sector Building industry End-users, and its behavior
'Soft' Enablers	 A common vision Collaboration, and open innovation Societal permission

Thank you Visit us at www.dnvkema.com

Frits Verheij Director Smart Energy DNV KEMA Energy & Sustainability Tel. +31 - 26 356 2445 E-mail: frits.verheij@dnvkema.com www.dnvkema.com

