

Demand response: Needs and possible realisation

René Kamphuis, bijdrage Duurzame elektriciteit in 2050; KIVI/NIRIA

Utrecht, May 16th 2013

Demand response Presentation outline

Introduction video Web2Energy; demand side integration

Context

- > Demand response in energy grids
- > kW- and kWh-applications
- > Demand side integration mechanisms with ICT
- Projects

Demand response Presentation outline

Introduction video Web2Energy

Context

- > Demand response in future energy grids
- > kW- and kWh-applications
- > Demand side integration mechanisms with ICT

Projects

IPCC Forecasts and Renewable energy

2100	Economic focus	Environmental focus
Globalisation	1.4 - 6.4 °C	1.1 - 2.9 °C
Regionalisation	2.0 - 5.4 °C	1.4 - 3.8 °C

A changing electricity supply

- > Europe: Decreasing base load (coal, gas, nuclear)
- > Netherlands 2030: 50 % of supply from new gas fields
- > EU-targets according to 'trias energetica'

Trias energetica (2020)

1. Increase efficiency of energy usage

2. Use renewables

3. Clean usage of fossil fuels

37 percent of renewable electricity

20%

Demand response Presentation outline

- Introduction video Web2Energy
- Context

> Demand response in energy grids

- > kW- and kWh-applications
- > Demand side integration mechanisms with ICT
- Projects

16-5-2013

KIVI Niria

The innovation for life

Drivers for demand response on the system level

- > Matching load and generation on:
 - > The European level
 - > The national level
 - > The regional level
- > Role in several phases of operation:
 - Normal operation
 - Capacity management/critical operation
 - > Gracefull degradation; load shedding
 - Power Outage/Black start
- Reduce grid and backup investments
- > Less reserve power and curtailment of renewables
- Consumer participation

Demand response from new energy carriers with impact on electricity grids

Electrification Mobility: Electric vehicles (> 9 kW)

- Currently: 20 km/hr (220 V ~)
- Top-of-the-line: 100 km/hr (220 V ~)
- Possible: 550 km/hr (DC; level3)

Heating, ventilation and air conditioning:

- Heat pumps (2-6 kW)
- Small-scale cogeneration of electricity and heat
 - Stirling µ-CHP (1.1 kW)
 - Fuel cells (1-5 kW)
 - Micro turbines (3 kW)

PV in distribution grids

Demand response in future energy grids

> Context

> Demand response in future energy grids

> kW- and kWh-applications

> Demand side integration mechanisms with ICT

Projects

Demand response and electricity distribution (kW)

- Optimization of assets within shorter timeframes
 - Now life cycle >30 years
- Increased uncertainty of planning
 - EV, dispersed energy resources
- Dynamically react on monitoring of lower Voltage levels
 - Fault detection
 - Black start
 - Load shedding
 - Self healing
 - Condition monitoring
- Active and malleable distribution grids with more flexibility

Blackstart of a HP-cluster in an active distribution grid

Charging EVs in a building

price

16-5-2013 / EE/EES PAGE 18

Amsterdam Power Exchange market mechanism

TNO innovation for life

Achieve supply/demand equilibrium

- kWh vs kW
- Momentaneous balance at all levels
- Operation based on competitive markets
 - Several time horizons in the future

7-3-2013

9-3-2013

innovation for life

Surplus of wind energy in autumn 2009: German spot price

D innovation for life

EEX-2009

23 Datum Titel van de presentatie

TNO innovation for life

Surplus of wind energy in autumn 2009: German spot price

16-5-2013 / EE/EES **TNO** innovation for life

PAGE 24

Market equilibrium and wind in-feed

quantity

Demand response in future energy grids

Context

> Demand response in future energy grids

> kW- and kWh-applications

> Demand side integration mechanisms with ICT

Projects

for life

Demand response already is around with larger customers

- NL: maximum system load 16000 MW, average 10000 MW
- Large industrial users:
 - Contingency management reserve capacity
 - Real-time potential (Deloitte, 2004)
 - 1730 MW available; 70 % used (1000 MW)
 - 35 % switched on price signals; 65 % door Programme Responsable
- Small customers (SenterNovem, 2005)
 - 710 MW in use; 1220 MW potentially available

US: Integration in virtual power plants, that are operated as a service

Used in congested systems

Differentiating and rewarding smaller customers

EU-directive:

- Shorter feedback cycle
- Users (5-15 % increased energy efficiency)
 Reward for:
- > Energy flexibility
 - Market friendliness (Energy)
- Capacity flexibility
 - > Grid friendliness (Power)

innovation

innovation for life

 \bullet

Smart Energy Management Matrix

Decisions on local issues made locally Decisions **Top-down Switching** on local - Partial Use of Response Potential issues - Uncertain System Reaction made - Autonomy Issues centrally One-way Two-way Communications Communications

Decisions on local issues made locally		
Decisions on local issues made centrally	Top-down Switching Partial Use of Response Potential Uncertain System Reaction Autonomy Issues 	Centralised Optimisation + Full Use of Response Potential + Certain System Reaction - Privacy and Autonomy Issues - Low Scalability
	One-way Communications	Two-way Communications

innovation for life

Decisions on local issues made locally	 Price Reaction + Full Use of Response Potential - Uncertain System Reaction - Market Inefficiency + No Privacy Issues 	
Decisions on local issues made centrally	 Top-down Switching Partial Use of Response Potential Uncertain System Reaction Autonomy Issues 	 Centralised Optimisation + Full Use of Response Potential + Certain System Reaction - Privacy and Autonomy Issues - Low Scalability
	One-way Communications	Two-way Communications

o innovation for life

Decisions on local issues made locally	 Price Reaction + Full Use of Response Potential - Uncertain System Reaction - Market Inefficiency + No Privacy Issues 	Market Integration + Full Use of Response Potential + Certain System Reaction + Efficient Market + No Privacy Issues
Decisions on local issues made centrally	 Top-down Switching Partial Use of Response Potential Uncertain System Reaction Autonomy Issues 	Centralised Optimisation + Full Use of Response Potential + Certain System Reaction - Privacy and Autonomy Issues - Low Scalability
	One-way Communications	Two-way Communications

33

o innovation for life

PowerMatcher: a tool for demand side market integration

Bids and prices

PowerMatcher agents operate in a **real-time market**:

- Bids express the *instant* willingness (flexibility) to consume and/or produce
- > A price is the **price for demand / supply**

PowerMatcher roles

- Agent: Expresses bids to its matcher based on flexibility in supply / demand it represents
- Matcher: determines price for its agents based on the supply and demand bids.
- Any agent is associated to exactly one matcher (normally)
- Any number of agents may be associated with one matcher

PowerMatcher roles

- Device agent: leaf node in a PM hierarchy
 - which represent the specific needs and possibilities of supply / demand (a device) and its users.
- Auctioneer: the root matcher in a PowerMatcher hierarchy
 - responsible for setting the market price for the hierarchy.

- Concentrator: an 'interior' node in a PM hierarchy
 - concentrates bids from agents further down the hierarchy (in the role of matcher), and represents all lower agents towards a node higher in the hierarchy;
 - price updates received by concentrators are propagated down to the associated agents lower in the hierarchy.

37

PowerMatcher communicates with appliances and the grid through open standards

Bids are concentrated and aggregated

Bids can be summed to represent the total supply / demand as function of price -> Scalable

innovation for life

Equilibrium pricing

The basic pricing mechanism is to determine the balance supply and demand

Allocation

The price – together with their bids – determines the allocation for agents.

Example of PowerMatcher bidding game

- Software agent based
- Information exchanged between agents Bids and Prices for a heat pump

Demand response in future energy grids

Context

> Demand response in future energy grids

> kW- and kWh-applications

> Demand side integration mechanisms with ICT

> Projects

TU/e Technische Universiteit Eindhoven University of Technology

Joining nodes in virtual power plants (PowerMatchingCity)

45 16-5-2013

> innovation for life

PowerMatcher enables optimization between energy supplier and distribution system objectives

Demonstration in a "real" system with 50 % RES

High variety of low carbon energy sources

> Several active demand & stationary storage options

Operated by the local municipal owned DSO, Østkraft

innovation for life

Eligible RD&D infrastructure & full scale test laboratory

EcoGrid

Conclusions

- Demand response provides a valuable tool for designing more malleable electricity grids
 - > From an asset management perspective
 - Broader design margins
 - For capacity management applications (kW)
 - Better component utilisation
 - For energy management applications (kWh)
 - > Less varying prices on the market
 - Provides a mechanism for better integration of consumers in the electricity system

Questions: rene.kamphuis@tno.nl / i.g.kamphuis@tue.nl