Leven we in 2050 in een energie-neutrale wijk?

Opslag van elektriciteit in de wijk: wat, waar, hoeveel?

Marjan van den Akker (Utrecht University)
Stephan Leemhuis (DNV KEMA, Utrecht University)
Gabriël Bloemhof (DNV KEMA)

Even voorstellen

- Wiskunde (Ir) TU/e
- Promotie wiskunde TU/e:
 - Operations research, scheduling

- Nationaal Lucht- en Ruimtevaartlaboratorium:
 - modelleren, optimalisatie en simulatie Air Traffic Management (en Rekeningrijden)
- Universiteit Utrecht: Docent/onderzoeker Informatica:
 - Decision support systems
 - Advanced planning algorithms
 - Smart energy systems

Electricity networks are changing Decentral generation (DG)

- Solar panels
- Wind generators
- Combined heat and power (CHP)

Example low voltage Network Model

Consumption & generation patterns

Individual power usage is highly variable

Solar energy may be available during hours of low consumption.

Storage systems to match supply and demand

- Enexis Smart Storage:
 - residential area Etten-Leur (next talk)
 - Lithium-ion-accu's
- `Een vakantie op autonome zonne-energie'
 - Holiday parc Vesting De Bronsbergen Zutphen
 - EU project GROWDERS
 - Batteries
 - Flywheels

www.growders.eu

Why storage systems

- Storing decentrally generated energy
- Prevent overloading
- Prevent voltage drops
- Power delivery in case of black-out
- Trading

$$W = V \times I$$

Ohm's law:

$$\Delta V = I \times R$$

EU-2050 Power Lab 16 mei, Ir. Jillis Raadschelders, DNV KEMA:

Which, where, when, what?

Network model

- Nodes V: Users or connection points
- Edges E: connections between nodes
 - Directed, current flow from node *i* to *j* (upstream negative)
- Discrete set of timeframes

Loadflow series model

- Placement of storage units is fixed
- Find:
 - Current on all edges in each time period
 - Voltage on all nodes in each time period
 - charging, decharging, actual storage in nodes at each time period
- Within constraints
- With the objective:
 - Minimize the energy taken from the grid connection multiplied by their prices i.e.

maximize being energy neutral

Load flow series model

- 3-phase alternating current physics:
 - large computation time

- Apply DC approximation
 - Different from DC approximation found in other operations research papers.
 - Constant current production

Loadflow series model

Loadflow series model: constraints

- Kirchoff's current law:
 - The sum of the currents leaving the vertex should be equal to the total net production of current of the vertex

- Kirchoff's voltage law:
 - The net voltage drop around a loop should be zero, ensured by

Loadflow series model: constraints

- Network operational limits on:
 - The voltages in nodes
 - The current through edges
- Inventory:
 - Inventory balance equation:
 - In-efficiencies (losses) are included
 - Amount of energy stored is bounded
 - Power of decharging and charging is bounded
 - Amount of energy stored: beginning = end

Loadflow series model

- Objective: Minimize the sum of
 - the energy taken from the grid connection $g_{i,t} V_N$ multiplied by their prices $k_{i,t}$
 - overload penalty cost

$$\min \sum_{i \in V} \sum_{t \in T} g_{i,t} \times k_{i,t} \times V_N + \sum_{(i,j) \in E} X \times x_{i,j} + \sum_{i \in V} Y \times y_i$$

maximize being energy neutral

Loadflow series model: summary

- Find:
 - Current on all edges in each time period
 - Voltage on all nodes in each time period
 - charging, decharging, actual storage in nodes at each time period
- Within given constraints
- With the objective
- Linear programming problem

Recap: decomposition model

What type of storage systems, how many, where?

- Minimize costs storage + loadflow series model results
- Combinatorial optimization problem
 - Many combinations possible
 - **2 x 2 x 2 x 2 x**

A LONG TIME AGO SISSA BEN DAHIR, THE GRAND VIZER TO THE INDIAN KING, SHIRHAM, PRESENTED HIS LATEST CREATION TO HIS RULER.

IT WAS A GAME CALLED CHESS.

THE KING WAS SO PLEASED, THAT HE TOLD SISSA THAT HE COULD NAME HIS OWN REWARD.

S JED, "MAJESTY, GIVE ME THE SUM OF 10,000 RUPEES; "HEAT IN THE FOLLOWING MANNER:

1 GRAIN . VARE OF THE CHESSBOARD,

2 GRAINS TO PLACE

4 GRAINS FOR THE THIRD

8 GRAINS FOR THE 4TH SQUARE; A.

TO CONTINUE IN LIKE MANNER,

OH MIGHTY AND GENEROUS ONE, LET ME COVER LASQUARES OF THE BOARD."

Optimization of storage location

- SLOPER model: local search through set of possible storage locations
- To evaluate each storage location set: load flow series model

SLOPER = Storage Location **OP**timization **E**fficient **R**outine

SLOPER model: simulated annealing

http://biology.st-andrews.ac.uk/vannesmithlab/heuristic.html

Storage placement tool

- Implementation in Java and ILOG CPLEX 12.2
- Validation with Plexos and Power-Factory:
 - Loadflow series model is reasonable approximation

[Faculty of Science

Interesting extensions

- Overload durations
- Aging effects of storage systems
- Combine with AC
- Other approximations in loadflow series model:
 - DC
 - Linearised AC
- Combine with
 - planning decentral generation
 - Optimizing topology

References

J.M. van den Akker, S.L. Leemhuis, G.A. Bloemhof (2012). Optimizing storage placement in electricity networks. *Operations Research 2012, Energy, markets and mobility*. Hannover.

Related work:

Maximize the amount of de-central generation within the limitations of the network

J.M. van den Akker et al. (2010). Optimal distributed power generation under network load constraints. *Proceedings of the 72nd European Study Group Mathematics with Industry*, Amsterdam

Optimize network topology

A.N. Dimitriu (2012). Automatic planning tools for power system design. Master's thesis Utrecht University/DNV KEMA

Concluding remarks

- Storage systems are important to enable energy neutral neighborhoods
- Optimization algorithms are helpful to find out which, where, how many storage systems