Deltares

Deltares

Offshore infrastructure and its impact on marine biodiversity

Opportunities and risks

Luca van Duren, Luuk van der Heijden, Oscar Bos and Antonios Emmanouil

16 May 2024

The North Sea

Photos: Oscar Bos, Luca van Duren

Offshore wind

Deltares

- Projected upscaling offshore wind very large; important to understand effects and minimise negative consequences
- Ecosystem effects through changes in the physics of the North Sea system
- Opportunities for biodiversity

WAGENINGEN

Impacts of offshore wind on environment

Focus on ecosystem effects

The WOZEP programme

WOZEP assesses the impact of future OWF scenarios

- Cause effect relations
- Development of models
- Long term monitoring data and model input
- Direct effects on protected species
- Indirect effects via habitat change
- Ecosystem effects

Knowledge gaps

Above water: collision/displacement

Under water: noise, habitat, EMF

Phases

- Construction
- Operation
- Decommissioning

Effect chain

Effects on wind

- OWF's extract momentum from the wind – strongly depends on replenishment of energy from higher layers
- Globally the vertical flux of energy ranges around 2 W m⁻²

Effects on wind

- OWF's extract momentum from the wind – strongly depends on replenishment of energy from higher layers
- Globally the vertical flux of energy ranges around 2 W m⁻²
- Several papers estimate a maximum extractable energy due to turbine-wind interactions around 1 W m⁻² – i.e. for Southern North Sea ± 100 GW
- Likely big effects on wind and weather patterns in NS countries

Limitation of maximal extractable energy due to turbinewind interactions for large-scale wind parks and global studies. From Miller et al. (2015)

Effects in wind and water

- Processes around individual turbines and within wind farms reasonably well understood
- Large-scale processes (i.e. scale of southern North Sea) poorly understood – also by specialists.
- Instantaneous wakes can be visible over 100km
- Average effects more localised
- Wind drives waves
- Waves drive resuspension of sediment
- Potential for effects on the ecosystem
 certainly with upscaling

Deltares WAGENINGEN UNIVERSITY & RESEARCH

Stratification

SalinityTemperature

© NTR Focus

Effects offshore wind stratification and mixing

Floeter e.a. Progr. Oceanogr. 2017

Effects offshore wind fine sediment

Effects offshore wind stratification and mixing

Difference in SPM concentration

Deltares

Effects offshore wind primary production

- Local increase (search area 6/7) >40%
- Delays in spring bloom

Regional differences

- Central southern North Sea: large effects due to relaxation of stratification. Limited effect of SPM, significant increase in productivity, delay spring bloom
- German Bight: regular but weak stratification. Opposing effects, net effect of increased turbidity appears to dominate, strong delay spring bloom
- UK coast and westernmost part of DCP: fully mixed some negative effects on primary production due to increased SPM
- German and Danish Wadden coast: similar to UK and western DCP, delineation unclear, effects limited in absolute terms
- Holland coast and Rhine ROFI: high nutrient availability, limited salinity stratification. Decrease of production due to increase in SPM
- Dogger Bank: limited, weak and variable stratification, coarse sediment, limited effect on productivity

19

Effects offshore wind food web

Zooplankton concentrations

CompetitionPrimary Production

WAGENINGEN

UNIVERSITY & RESEARCH

Deltares

Degraer et al Oceanogr. 2020

Effects offshore wind cascade up the foodweb

Marshak & Link 2021

Effects sea bed

No detectible change in benthic species richness after 5 years of fishing exclusion

Slight increase in species diversity close to turbines (review paper several wind farms)

Effects offshore wind birds / mammals

Behaviour	Birds	Mammals
Attraction	$\begin{tabular}{ c c } \hline \hline$	
Inconsistent		
Avoidence		

Garthe e.a. 2023; Scheidat ea 2011; Vanermen e.a. 2015 and 2021; Dierschke e.a. 2016

Nature inclusive Design

Opportunities and Risks

Opportunities

Nature Inclusive design

- Lots of unknowns (research opportunities)
- Large interest, especially in the Dutch North Sea due to regulations
- Deciding factor for the tender decision of HKW and IJmuiden Ver OWFs

Principles

- Nature restoration & enhancement of biodiversity
- Various measures exist, specific to certain "umbrella" species
- Design: Creating a more complex, 3D environment with shelter spaces
 - increases local biodiversity
 - effects from large-scale implementation are still
 Unknown

25

Industrial rationale

- Added value (either co-use fisheries, aquaculture or North Sea Nature) may help win bids. Currently deciding factor in NL.
- Decommissioning: current rules state that all defunct infrastructure has to be removed; current cautious move towards relaxation of these rules from international organisations (e.g. OSPAR) for sustainability

Societal / practical rationale

- North Sea is impoverished due to
 - Removal of large rocks and boulders
 - Disappearance of flat oysters (20000 km² from Dutch Continental Shelf)
 - Continuous bed disturbance (bottom trawling).

Societal / practical rationale

- North Sea is impoverished due to
 - Removal of large rocks and boulders
 - Disappearance of flat oysters (20000 km² from Dutch Continental Shelf)
 - Continuous bed disturbance (bottom trawling).
- Wind farms offer large area free from bottom trawling
- Wind farms have areas of hard substrate (scour protection, cable crossings)

Deltares

Biodiversity and offshore infrastructure

Biodiversity – what do we want?

- Holland coast very dynamic
- Large mobile bed forms; by nature not conducive to e.g. reef builders

Biodiversity – what do we want?

- Holland coast very dynamic
- Large mobile bed forms; by nature not conducive to e.g. reef builders
- Low in biodiversity macrobenthos
- Rich in meiobenthos (between 0.1 and 1mm)
- Holland Coast one of the largest sand wave systems in the world

On land

IGEN Search

Artificial reefs – legal frame work

OSPAR / HELCOM

- mechanism by which fifteen national governments, together with the European Union, cooperate to protect the marine environment of the North-East Atlantic.
- Advisory role for European legislation
- Origin: dumping / pollution
- National governments
 - Legislative powers
 - Incorporate European guidelines
 - Interpretation and legislation re. liability may differ among countries

Artificial reefs – legal frame work

OSPAR / HELCOM

- mechanism by which fifteen national governments, together with the European Union, cooperate to protect the marine environment of the North-East Atlantic.
- Advisory role for European legislation
- Origin: dumping / pollution
- National governments
 - Legislative powers
 - Incorporate European guidelines
 - Interpretation and legislation re. liability may differ among countries

- 1
- 1
- 1
1
1
1
1
1
1
1
1
1

What do we want with the North Sea?

- Return to historic situation not possible due to other changes (e.g. climate change, nutrient run-off, spatial planning)
- Historic situation can be an initial guideline
- It is valid attempting to try to restore habitats / populations that have disappeared due to human intervention
- Emphasis should be on ecosystem functions, but working with "umbrella species" is easier

What do we want with the North Sea?

- Return to historic situation not possible due to other changes (e.g. climate change, nutrient run-off, spatial planning)
- Historic situation can be an initial guideline
- It is valid attempting to try to restore habitats / populations that have disappeared due to human intervention
- Emphasis should be on ecosystem functions, but working with "umbrella species" is easier
- North Sea wide vision is required for evaluation. Location specific circumstances should be taken into account (possible under GNSBI)

Risks

Invasive species

- High density on intertidal areas, buoys, stones and pillars near the surface
- Lower densities in deeper habitats
- Major vector: aquaculture → shifting live organisms, also for restoration purposes, entails a high risk

Spread of disease

Bonamia

Stability

- Adverse effects on scour protection
- Stability of ecological structures (e.g. shell material

Framework for evaluating biodiversity metrics

	Com	position	Structure		Function	
Landscape	Identit and p patch (y, distribution, roportions of (habitat) types	Heterogeneity; connectivity; patchiness; fragmentation		Nutrient cycling rates; disturbance processes and return interval; energy f ow	
Community/ Ecosystem		ness; evenness; C3 plant species os; dominance- versity curves	Slope and aspect; foliage density; canopy openness; water availability		Productivity; herbivory and predation rates; colonization rate	
Species		Absolute or relative abundance; biomass; density	Dispersion; range; population structure (age and sex ratios)	1	Population f uctuations; phenology; fertility; recruitment rate	
Genetic		Allelic diversity; deleterious recessives; karyotypic variants	Effective population size; heterozygosity	d	Inbreeding lepression; gene f ow; rate of genetic drift	

From: Bracy Knight, et al. 2020

Reef restoration

Flat oyster (Ostrea edulis)

- Historically characteristic key species, currently functionally extinct in the North Sea
- Nationally and internationally high priority
- Bed disturbance (bottom trawling) main threat
- Source population absent in the North Sea (present in e.g. Lake Grevelingen, Limfjorden)
- Pilot projects in "Voordelta region" using reef balls and gabions for settlement and desk studies available regarding habitat requirements and larval dispersal

Habitat requirements

- No fishing
- Bed stability

Biodiversity and offshore infrastructure

Habitat requirements

WAGENINGEN

No fishing

Deltares

- Bed stability
- Low bed shear stress
- Medium mud content

Reality check: growth

Biodiversity and offshore infrastructure

Results

- Hardly any growth in areas that are most suitable
- Reasonable growth on Frisian Front
- Good growth in areas that have limited suitability
- Old oyster grounds were likely not all live oysters
- Old distribution of oysters likely built up over centuries
- Do not expect to get them back rapidly

Larval dispersal

- Oysters are functionally extinct, so restoration will not happen by itself
- Oysters have pelagic larvae
- You want to kick start populations where larvae can reach suitable habitat
- Preferably become self-sustaining
- Note: this model is old!

Other reef forming species

- Sabellaria spinulosa (Ross worm)
 - Individuals not rare –reef forming is
 - Requires high suspended sediment
 - Reef formation accelerated by presence of adult reef
- Lanice conchilega (Sand mason worm)
 - Factors influencing reef formation not well understood
 - No measures known to stimulate reef _ formation
- Modiolus modiolus (Horse mussel)
 - No reefs known in the Netherlands
 - Reefs at depths >35 m

Wrap-up

Take home messages

- Offshore wind offers risks and opportunities to the environment
- The opportunities for Nature Inclusive Design are currently poorly understood
 - Biodiversity increase per sé should not be a target
 - Habitat, larval dispersal and carrying capacity for species should all be taken into account
 - Think before you start
- Passive restoration prefereable to active
- Define targets clearly
- Respect the under water landscape; also things you cannot see are valuable!

Deltares WAGENINGEN UNIVERSITY & RESEARCH

Photo: Ryo Minemizu

Figure: Christian Sardet

Contact

- www.deltares.nl
- luca.vanduren@deltares.nl

@deltares

Ø @deltares

- in linkedin.com/company/deltares
- f facebook.com/deltaresNL

