High-capacity optical wireless communication by directed narrow beams
Op 12 december 2023 zal Prof. Ton Koonen, zijn PhD defense houden op de TU/e, Atlas building, room 0.710.
Zijn defense zal gaan over
High-capacity optical wireless communication by directed narrow beams
Populaire samenvatting (US English)
Wireless communication is pervading nearly every part of our lives: we use our smartphones, laptops, tablets, etc., almost continuously, and want to stay connected wherever we are. Also, in the upcoming Internet-of-Things there will be a myriad of devices which want to be connected wirelessly. However, the radio spectrum is getting congested and crosstalk between the many users is seriously hampering access to the presently radio-based wireless communication. Optical wireless communication can come to help here. As we already know from the optical fiber world, optical communication can transport huge amounts of information with enormous bandwidths and very low losses and does not suffer from crosstalk by electro-magnetic disturbances. Optical wireless communication by means of narrow optical beams behaves similarly as optical fiber communication, but without needing a wired connection. So, it can offer the major benefit of wireless communication, namely freedom-of-movement. Moreover, light does not penetrate walls and the beams get only there where they are intended to go, so it removes crosstalk between the users. The latter makes the system highly energy-efficient also, as no beam energy is wasted. Note that an optical beam can have an even higher bandwidth than a fiber, and also a smaller delay, as it does not suffer from waveguide dispersion and nothing goes faster than light in air, as Einstein already stated…
The thesis treats in-depth the design of indoor optical wireless communication networks, including the key functions: the transmit function steering the beams, the localization function finding the devices where the beams need to go to, and the receive function which enables to receive a beam over a maximum range of angles and with maximum aperture in order to catch as much as possible light of the beam. These functions have been analyzed, designed, realized and implemented in a laboratory setup, which shows the viability of our concept for bi-directional optical wireless transmission of high-speed data streams. We demonstrated successfully the individual optical wireless transmission of high-definition Gigabit Ethernet video streams to multiple closely spaced users.
Populaire samenvatting (NL)
Draadloze communicatie is in vrijwel alle delen van ons leven doorgedrongen: we gebruiken onze smartphones, laptops, tablet computers, etc., bijna continu, en we willen verbonden blijven waar we ook maar zijn. Daarnaast zullen er in het komende Internet-of-Things talloze dingen zijn die draadloos verbonden willen zijn. Maar het radio spectrum is verzadigd aan het raken, en de overspraak tussen de vele gebruikers is toegang tot de huidige radio-gebaseerde draadloze communicatie ernstig aan het bemoeilijken. Optische draadloze communicatie kan te hulp komen schieten.
Zoals we uit de glasvezel-wereld al weten kunnen middels optische communicatie gigantische hoeveelheden informatie getransporteerd worden met enorme bandbreedte en zeer lage verliezen.
Bovendien heeft het geen last van overspraak door electro-magnetische verstoringen. Optische draadloze communicatie middels smalle lichtbundels gedraagt zich vergelijkbaar met de glasvezel, maar zonder verbonden te hoeven zijn met een draad. Zo biedt het het voornaamste voordeel van draadloze communicatie, namelijk bewegingsvrijheid. Bovendien gaat licht niet door muren heen en komen de lichtbundels alleen daar waar en wanneer ze nodig zijn, dus vermijdt de overspraak tussen de gebruikers.
Dit maakt dat het systeem ook heel efficiënt met energie omspringt, er wordt immers geen lichtbundel-energie verspild.
Bijzonder is dat een optische bundel zelfs meer bandbreedte kan hebben dan een glasvezel, en minder vertraging, omdat een bundel geen last heeft van golfgeleider-dispersie en er niets sneller gaat dan licht door de lucht zoals Einstein al betoogde…
Het proefschrift behandelt in detail het ontwerp van draadloze optische communicatie netwerken binnenshuis, inclusief de sleutel-funkties: het sturen van de bundels, het lokaliseren van de gebruikers waar de bundels naartoe moeten, en het ontvangen van de bundels over een zo groot mogelijk hoekbereik en met maximale apertuur om zoveel mogelijk licht van de bundel in te kunnen vangen.
Deze functies zijn geanalyseerd, ontworpen, gerealiseerd en samengebouwd in een laboratorium-opstelling die de levensvatbaarheid van ons concept voor twee-richtings optische draadloze transmissie van data met hoge snelheid laat zien. We hebben met succes de individuele optische draadloze overdracht van hoge-definitie video-stromen met Gigabit Ethernet snelheid getoond naar meerdere dicht bij elkaar zijnde gebruikers.
Spreker:
prof. A.M.J. (Ton) Koomen Eindhoven University
Research profile
Ton Koonen is a full professor of Electro-Optical Communications and Chair of Broadband Communication Networks in the department Telecommunication Technology and Electromagnetics. His areas of specialization include computer systems, architectures and networks, telecommunications, broadband and optical fiber-to/in-the-home. Ton has initiated and led several European and national R&D projects in this area on dynamically reconfigurable hybrid fiber access networks, fiber-wireless, packet-switched access, and short-range multimode (polymer) optical fiber networks, and label-controlled optical packet routed networks.
His current research interests are optical fiber-supported in-building networks (including optical wireless communication techniques, radio-over-fiber techniques, and high-capacity plastic optical fiber (POF) techniques), optical access networks, and spatial division multiplexed systems. His group has, for example, developed a Wi-Fi network that transmits signals via infrared light, achieving a speed of 42.8 Gb/s, 100 times faster than current networks generally achieve. At this speed, an entire film could be transferred in one second.
Academic background
Ton Koonen received his MSc (with honors) in Electrical Engineering from TU/e in 1979.In that year, he joined Philips Telecommunicatie Industrie (Telecommunications Industry). From 1987 to 2000 he worked on high-speed transmission systems and optical fiber systems for hybrid access networks at Bell Laboratories within Lucent. He has also worked as a professor at the University of Twente, holding a chair on Photonic Networks.Â
Ton is chairman of the Electro-Optical Communication Systems (ECO) group, part of the COBRA institute and from September 2012 he was also vice-dean of the department Electrical Engineering. Ton is a Bell Labs Fellow, IEEE Fellow, OSA Fellow, ERC Advanced Investigator Grant Winner, Distinguished Guest Professor of Hunan University, Changsha, China, and has frequently acted as an auditor and reviewer on national and EC projects. Currently, he is involved in a number of access/in-home projects in the Freeband program, the IOP GenCom program, and the EC FP6 IST and FP7 ICT programs. He has authored and co-authored more than 250 conference and journal publications.
Expertise related to UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):
Register
After register, you receive the MS-Teams link for "Online participation".